Akva-tehnik.ru

Отделка дома своими руками
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы и устройство ламп дневного света

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Люминесцентные лампы

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Движение электронов в лампе

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Преобразование в видимый свет

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Стартер на схеме лампы

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Принцип работы люминесцентной лампы

Среди газоразрядных осветительных приборов широкую известность получили люминесцентные лампы. Они изготавливаются в форме стеклянных цилиндров, на внутреннюю поверхность которых нанесен слой люминофора. Принцип работы люминесцентной лампы состоит в появлении внутри колбы газового разряда в газовой среде, смешанной с разреженными ртутными парами. Далее под влиянием ультрафиолетового излучения начинает светиться люминофор, являющийся источником основного светового потока.

Как появились люминесцентные лампы

Прежде чем рассматривать вопрос, как работает люминесцентная лампа, необходимо хотя бы в общих чертах изучить историю ее появления. Впервые эффект свечения наблюдал известный русский ученый М.В. Ломоносов еще в середине 18 века. В эксперименте был использован стеклянный шар, наполненный водородом. После того как к нему был приложен электрический ток, шар начал испускать видимый свет. Однако это устройство не рассматривалось в качестве источника освещения, а полноценная работа в этой области началась уже в 19 веке.

Читайте так же:
Звуковые датчики для включения и выключения освещения

Принцип работы люминесцентной лампы

В 1856 году немецкому стеклодуву Гейслеру удалось откачать воздух из стеклянной колбы с помощью изобретенного им же вакуумного насоса. Используя высоковольтную катушку, он вызвал внутри колбы свечение зеленоватого цвета. Данное устройство получило название трубки Гейслера. Немного позднее, в 1859 году Александр Беккерель осуществил покрытие трубок изнутри веществами, обладающими люминесцирующими свойствами.

Именно с этого момента началось развитие технологий данного типа освещения. Проводимые работы так и остались экспериментами, но сама идея получила дальнейшее развитие на практике.

Первую демонстрацию трубок Гейслера в 1891 году провел американский ученый Никола Тесла. Он на практике показал возможность светиться у трубок с различными покрытиями под действием высокочастотного электрического поля. В этом же году Тесла получил патент на аргоновые газоразрядные лампы, спроектированные для систем освещения.

Принцип работы люминесцентной лампы

Первые лампы для светильника на основе ртути удалось получить американцу Питеру Хьюитту. Ртутные пары светились мягким сине-зеленым светом, а по техническим характеристикам эти устройства превосходили лампы Эдисона. Однако полученные цветовые оттенки не нашли широкого применения в искусственном освещении.

Ровное белое свечение было получено в 1926 году немецким изобретателем Эдмундом Гермером. На внутреннюю часть колбы наносился флуоресцентный порошок – люминофор, после чего внутри нее увеличивалось давление. Свет от такого источника был гораздо ярче по сравнению с лампами накаливания. Конструкция этих устройств считается максимально близкой к современным люминесцентным лампам.

С 1934 года компания General Electric приобрела патент и приступила к выпуску осветительных приборов нового типа. Они сразу же приобрели широкую популярность и стали повсеместно использоваться в искусственном освещении вместо обычных лампочек.

Особенности конструкции

Колбы всех ламп, независимо от конфигурации, всегда имеют цилиндрическую форму. Их наружный диаметр составляет 12, 16, 26 и 38 мм. Чаще всего источники света изготавливаются прямыми, но некоторые из них сформированы в кольцо, букву U, спираль и т.д.

Принцип работы люминесцентной лампы

Устройство люминесцентной лампы предполагает герметичное соединение торцов со стеклянными ножками, внутри которых установлены зажигательные электроды. Они изготавливаются из вольфрама и закручиваются в спираль, так же как у обычных ламп накаливания. Снаружи электроды соединяются со штырьками цоколя, выполняющими функцию контактов. Устройства прямой и U-образной формы для светильника оборудованы двумя видами цоколей – G5 и G13. В указанной маркировке цифры означают размер зазора между штыревыми контактами в миллиметрах.

Рассматривая вопрос, как устроена лампа, следует помнить, что в одну из стеклянных ножек впаян специальный штенгель, через который производится откачка воздуха изнутри колбы. После этого внутрь закачивается инертный газ с небольшим количеством ртути, примерно 30 мг. Вместо чистой ртути может использоваться амальгама, представляющая собой ее сплавы с такими металлами, как индий, висмут и другие. Вольфрамовые электроды покрываются активирующим веществом. Для этой цели используются оксиды бария, кальция или стронция. В некоторых случаях к ним добавляется торий.

Принцип работы люминесцентной лампы

Основной функцией электродов является отдача и прием ионов и электронов, обеспечивающих течение электрического тока в пространстве, где образуется разряд. Чтобы запустить процесс термоэмиссии, они разогреваются до температуры 1100-1200 градусов. Электроны начинают вылетать с поверхности активирующего вещества. В процессе эксплуатации слой этих веществ постепенно уменьшается, происходит его оседание на стеклянных стенках, что делает зависимым от этого общий срок эксплуатации люминесцентной лампы.

Максимальное ультрафиолетовое излучение ртути достигается наиболее эффективным использованием разряда. Для этого внутри колбы должна поддерживаться определенная температура. Ее диаметр определяется именно этим техническим условием.

Работоспособность лампы для светильника во многом зависит от плотности тока. Чтобы найти эту величину, необходимо значение тока разделить на площадь сечения цилиндра. Мощность лампы находится в прямой зависимости с ее длиной, поэтому просто так колбу нельзя сделать короче. В связи с этим, габариты стали уменьшаться за счет измененной конфигурации, при которой общая протяженность изделия остается прежней.

Как работает устройство с люминофором

Принцип работы люминесцентных ламп во многом зависит от ее конструкции. Газ, наполняющий внутреннее пространство колбы, создает электропроводную среду с отрицательным сопротивлением. Его проявление заключается в изменении напряжения между электродами, расположенными с противоположных сторон. Напряжение начинает снижаться при возрастании тока, который требует ограничения.

Включение в работу люминесцентной лампы для светильника осуществляется при помощи электромеханической пускорегулирующей аппаратуры – ЭмПРА. Основными компонентами данной схемы служат дроссель и стартер. Первое устройство создает импульс напряжения с большой величиной, обеспечивающий зажигание. Второй компонент представляет собой лампу тлеющего разряда, внутри которой в газовой среде размещаются два электрода. Один электрод является биметаллической пластиной, а в исходном положении они оба разомкнуты.

Запуск лампы и ее принцип действия происходят в следующей последовательности:

  • В пусковую схему изначально поступает напряжение. Изначально ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идет на стартер и дает толчок к образованию внутри него тлеющего разряда.
  • После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате, металл становится проводником и действие разряда прекращается.
  • На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов. В дросселе под влиянием самоиндукции образуется импульс высокого напряжения, дающий толчок к зажиганию лампы.
  • Ток, проходящий через лампу для светильника, постепенно уменьшается в два раза из-за падения напряжения на дросселе. Его не хватает, чтобы повторно запустить стартер с разомкнутыми контактами, но сама лампа будет продолжать свою работу.
Читайте так же:
Способы оконцевания жил кабелей — назначение и инструмент

Если в один светильник установлены сразу две светящиеся лампы, схема включения предусматривает для них общий дроссель. Подключение ламп осуществляется последовательно, однако к каждой из них параллельно подключен собственный стартер. При выходе из строя одной из ламп, вторая также отключается. В схеме включения рекомендуется устанавливать только качественные выключатели. У бюджетных моделей возможно залипание контактов под влиянием пусковых токов. Поскольку дроссель и стартер являются основными компонентами пусковой схемы, их работу следует рассмотреть более подробно.

Дроссель: назначение и устройство

Люминесцентные светильники не могут быть включены как обычные лампы, одной лишь подачей электроэнергии. Для того чтобы они заработали и начали светиться, необходимо использовать специальную пускорегулирующую аппаратуру.

Принцип работы люминесцентной лампы

Ток, протекающий через электроды требуется ограничить, поэтому в схеме используется сопротивление, называемое балластом. Его функции выполняет дроссель, в котором присутствует реактивное сопротивление, не выделяя при этом лишнего тепла. Он ограничивает ток, тем самым предупреждая его нарастание после подключения к сети.

Помимо включения, дроссель в пусковой схеме выполняет следующие функции:

  • Создает безопасный ток, достаточный для быстрого разогрева электродов в лампе при розжиге.
  • В обмотке образуется импульс высокого напряжения, благодаря которому внутри колбы возникает разряд.
  • Стабилизирует разряд при достижении током номинального значения.
  • Обеспечивает устойчивую работу лампы, несмотря на скачки и перепады сетевого напряжения.

Основным элементом дросселя служит катушка индуктивности, которая состоит из проводов, намотанных на сердечник. Именно она выполняет основную ограничивающую функцию. Вся конструкция залита компаундом – специальной массой, устойчивой к возгоранию. За счет этого обеспечивается дополнительная изоляция проводов. Катушка помещается в корпусе из термоустойчивой пластмассы.

Функции стартера в схеме подключения

Вторым компонентом, входящим в состав пускорегулирующей аппаратуры, является стартер, имеющий довольно простую конструкцию. Продукция разных производителей отличается собственными параметрами и техническими характеристиками, которые необходимо учитывать при покупке ламп. Однако устройство и принцип работы этих приборов одинаковый.

Конструкция стартера выполнена в виде стеклянного баллона, заполненного инертным газом – неоном или смесью водорода с гелием. В цоколь баллона неподвижно впаяны металлические электроды, выведенные наружу. Сама стеклянная конструкция располагается в металлическом или пластмассовом корпусе, покрытом термоизоляционным составом.

Принцип работы люминесцентной лампы

Параллельно с электродами подключен конденсатор емкостью 0,003-0,1 мкф, предназначенный для борьбы с радиопомехами, возникающими при контакте электродов. Кроме того, данный элемент принимает участие в запуске лампы и понижает величину импульса напряжения, возникающего во время размыкания электродов. Параллельное включение конденсатора существенно понижает вероятность залипания электродов под действием электрической дуги.

Основной функцией стартера является замыкание и размыкание электрической цепи, запуск механизма розжига инертного газа, закачанного в колбу. При замыкании цепи электроды самой лампы нагреваются, и весь процесс зажигания заметно облегчается. После нагрева цепь разрывается с одновременным образованием импульса повышенного напряжения, пробивающего газовый промежуток колбы. Такой принцип работы каждого стартера.

Несмотря на устойчивую и долговременную работу, схемы ЭмПРА с использованием стартера считается несовершенной. Рабочий процесс нередко сопровождается мерцанием, шумом дросселя и другими неприятными явлениями. Поэтому все современные люминесцентные лампы работают с более совершенной электронной пусковой схемой – ЭПРА.

Подключение через электронный балласт – ЭПРА

Принцип работы люминесцентной лампы

Схема ЭПРА с люминесцентными лампами функционирует на основе полупроводниковых элементов, что позволило снизить габариты и повысить качество работы этих устройств. Заметно возросли сроки эксплуатации, повысился КПД, появилась возможность плавной регулировки яркости, увеличился коэффициент мощности.

В состав схемы электронного пускорегулирующего устройства входят следующие компоненты:

  • Устройство для выпрямления тока и напряжения.
  • Фильтр электромагнитных излучений.
  • Корректор для регулировки коэффициента мощности.
  • Фильтр сглаживания напряжения.
  • Инверторная схема.
  • Элемент с функциями дросселя.

Схема ЭПРА может быть мостовой или полумостовой. Первый вариант предназначен для очень мощных ламп, а второй используют все остальные люминесцентные лампы низкого давления.

В основе работы электронного балласта лежат увеличенные частотные характеристики, обеспечивающие равномерное свечение, без каких-либо мерцаний. Современные микросхемы, используемые в конструкции, позволили существенно уменьшить размеры устройства и обеспечить равномерный подогрев электродов. Благодаря ЭПРА, люминесцентная лампа может быть автоматически подстроена под конкретные технические характеристики.

Принцип работы и устройство ламп дневного света

Лампы дневного света – это осветительные приборы, которые позволяют экономить электроэнергию по сравнению с классическими источниками света. Люминесцентные лампы применяются для освещения жилых, рабочих и производственных помещений. Их работа основывается на эффекте люминесценции. Чтобы выбрать подходящую лампочку, нужно знать конструктивные особенности и технические характеристики.

Принцип работы

Люминесцентная лампа – это газоразрядный источник света. Излучение происходит из-за реакции смеси газов, находящихся в колбе. Раньше подобные приборы практически не использовались в бытовых условиях, так как считалось, что они могут навредить зрению. Но после проведения исследований ученые пришли к выводу, что лучи отлично воспринимаются человеческим глазом. Из чего состоит люминесцентная лампа, зависит от ее предназначения. Смесь паров внутри может быть различной.

Конструктивно устройство представляет собой стеклянную трубчатую колбу, на внутреннюю поверхность которой нанесен люминофор. На торцах расположены электроды. Внутри трубки – пары ртутит и смесь газов.

Принцип работы люминесцентной лампы заключается в следующем:

  • Под действием электрического поля в лампочке возникает газовый разряд.
  • Ток, который проходит через пары, вызывает ультрафиолетовое излучение, из-за чего начинает светиться люминофор.

Преимущества люминесцентных ламп дневного света:

  • высокая световая отдача;
  • экономия электричества;
  • прочность – для изготовления плафонов используются качественные материалы;
  • длительность работы;
  • разнообразие форм и размеров;
  • широкий диапазон цветовых температур;
  • создает теплый естественный свет, близкий к дневному излучению.
  • наличие в составе ламы вредных компонентов (ртуть);
  • сложность утилизации;
  • ограничения по количеству циклов включения и выключения;
  • чувствительность к влажности;
  • полное включение происходит не сразу;
  • может гудеть и мерцать во время работы;
  • зависимость стабильной работы от температуры.

Оптимальной рабочей температурой устройства является +20 градусов. Допустимый диапазон – 55 градусов, но он постоянно расширяется с развитием технологий и использованием электронных балластов.

Стоимость лампочек дневного света ниже, чем у светодиодов. Но она больше, чем у ламп накаливания или галогенных приборов.

Разновидности ламп дневного света

Классификация люминесцентных ламп может проводиться по мощности, температуре, форме, способу установки, длине. К самым распространенным относятся лампы высокого и низкого давления. Приборы высокого давления используются на улицах и в светильниках большой мощности. Лампочки низкого давления подходят для люстр в жилых и производственных помещениях.

Читайте так же:
Как сделать освещение для теплицы из поликарбоната своими руками

По типу установки источники света классифицируются на следующие группы:

  • подвесные;
  • переносные;
  • потолочные;
  • настенные.

По строению лампы бывают:

  • компактные;
  • кольцевые;
  • U образные;
  • прямые.

Чаще всего для освещения используется кольцевая и прямая короткая или длинная лампа. Также активно применяются приборы, работающие от аккумулятора или батареек.

Область применения

Лампы дневного света получили широкое распространение благодаря своим преимуществам. Они используются для освещения в домах и квартирах, офисах, производствах и складах, в уличной подсветке и световой рекламе.

В зависимости от спектра цветопередачи лампы бывают:

  • аналогичные солнечному излучению – используются в подсветке офисов, производственных цехов, административных организациях;
  • с повышенной цветопередачей – подходят для выставок, галерей, музеев, больниц, организаций по продаже красителей, тканей и других художественных приспособлений;
  • с повышенным излучением в красном и синем спектре – используются для подсветки аквариумов, теплиц, в магазинах растений, оранжереях;
  • со смещением в синюю и УФ часть спектра – декорирование аквариумов;
  • свет в УФ спектре – солярии;
  • УФ излучение повышенной мощности – антибактериальные лампы.

До активного использования светодиодов люминесцентные светящиеся лампочки применялись для подсветки жидкокристаллических мониторов. Мощные люминесцентные приборы применяются в уличном освещении трасс, стадионов, площадок.

Технические характеристики

К основным техническим характеристикам относятся:

  • Цветопередача. Это одна из главных характеристик источника света. Определяется составом люминофора. Люминесцентные приборы имеют широкую цветовую гамму благодаря множеству различных составов. Самые распространенные для домашнего использования – устройства с цветовой температурой 2700 К, дающие теплый естественный оттенок. В рекламной и архитектурной подсветке используются приборы разных цветов – розовые, голубые.
  • Цоколь. Можно выделить 2 формы цоколя в зависимости от конструкции – штырьковые и патронные. Штырьковые цоколи используются в светильниках, в которые устанавливается U образная колба. Патронные цоколи имеют классический внешний вид с резьбой разного диаметра. Применяются в домашних светильниках.
  • Напряжение. Рабочее питание – 220 В, реже используется последовательное подключение дух ламп, работающее на 127 В.
  • Мощность. Самые распространенные – лампы на 18 В. Есть более мощные источники для прожекторов, достигающие 80 Вт.
  • Срок службы. Может достигать 40000 часов.
  • КПД выше 20%.
  • Физические размеры. Например, лампы Армстронг имеют стандартные размеры под ячейку 600х600 мм.
  • Степень защиты от пыли и влаги. Определяет возможность безопасной работы при определенных климатических условиях.
  • Материал изготовления. Пластик, металл и другие.

При выборе лампы нужно учитывать технические характеристики, а также параметры светильника, в который источник света будет установлен.

Подключение к сети

Газоразрядные источники света не могут подключаться напрямую к электросети. Это связано с тем, что в выключенном состоянии у лампы повышенное сопротивление, поэтому для зажигания нужен импульс высокого напряжения. После появления заряда у лампочки появляется отрицательное дифференциальное сопротивление, что требует включения в цепь дополнительного резистора. В ином случае источник света сломается.

Чтобы решить эти проблемы, применяются балласты. К самым распространенным относятся два вида — электромагнитные балласты ЭмПРА и электронные балласты ЭПРА.

ЭмПРА

Устройства с электромагнитным пускорегулирующим аппаратом представляют собой дроссель, у которого есть набор индуктивных сопротивлений. Он подключается параллельно люминесцентному источнику определенной мощности. С помощью дросселя формируется запускающий импульс и ограничивается электрический ток, проходящий через лампочку. К преимуществам относятся:

  • высокая надежность;
  • простота конструкции;
  • долгий срок службы.
  • длительность запуска составляет 1-3 секунды;
  • требуется большее количество энергии по сравнению с ЭПРА;
  • гудение;
  • мерцание;
  • крупные размеры;
  • не работает при отрицательных температурах.

Для создания резонансного контура параллельно подключается конденсатор с малой емкостью. Это помогает сформировать импульс большой длительности для зажигания лампочки.

Электронный пускорегулирующий аппарат отличается отсутствием мигания лампочки. Он питает источник света высокочастотным напряжением, достигающем 133 кГц. Есть 2 вида ЭПРА по способу запуска:

  • холодный – лампочка светится сразу же после включения, подходит для светильников, которые используются редко;
  • горячий запуск – электроды прогреваются, лампа загорается через 0,5 – 1 сек.
  • быстрый запуск;
  • потребление энергии ниже на 20-25%;
  • меньше материальных затрат на утилизацию;
  • наличие в продаже устройств с диммером.

По сравнению с лампами, использующими электромеханический балласт, для работы ЭПРА не требуется стартер. Балласт может самостоятельно сформировать необходимую последовательность напряжений. Есть разные способы запуска ламп. Обычно применяется подогрев катодов напряжением большей частоты, чем сетевое.

В контуре компоненты выбираются таким образом, чтобы при отсутствии заряда возникал электрический резонанс. Он приводит к повышению напряжения между катодами. Это приводит к более легкому зажиганию лампочки.

Основные неисправности

К основным причинам, по которым люминесцентные лампы дневного света выходят из строя, относятся:

  • Износ вольфрамовой нити. Из вольфрамовой нити, которая покрыта активной массой, делаются электроды. Со временем покрытие разрушается и осыпается, из-за чего нить выходит из строя.
  • Постоянное срабатывание стартера в лампочках с ЭмПРА. Оно напрямую связано с выгоранием электродов. При постоянном срабатывании стартеров светильник начинает мигать, что негативно сказывается на здоровье человека.
  • Неисправность дросселя. Если сломался дроссель, электрический ток в цепи значительно возрастает, из-за чего резко нагреваются электроды. Под действием высоких температур электроды разрушаются, и лампа перестает работать.
  • Некачественная защита в лампах с ЭПРА. В приборах с электронным балластом устанавливается схема автоматического отключения при перегорании лампы. В дешевых устройствах неизвестного производителя защита может быть некачественной или отсутствовать вовсе. Это приводит к повышению напряжения и перегоранию транзисторов балласта.
  • Неправильный выбор конденсатора. Если конденсатор не подходит под мощность лампы, произойдет пробой.

Если лампа сломалась, осуществить самостоятельный ремонт сложно. Рекомендуется обратиться к специалисту или приобрести новый прибор.

Маркировка люминесцентных ламп

Есть 2 типа маркировки люминесцентных ламп – отечественная и зарубежная.

Отечественная маркировка записывается в цифробуквенном виде:

  • Первая буква – Л, обозначает «лампа».
  • Вторая характеризует световой поток (Д – дневной, ХБ – холодный белый, ТБ – теплый белый, ЕБ – естественный белый, Б – белый, УФ – ультрафиолет, К – красный, З – зеленый, Г – голубой, С – синий, Ж – желтый).
  • Третья буква – качество цветопередачи. Бывает Ц – улучшенное качество и ЦЦ – особо высокая цветопередача.
  • Четвертая буква – конструкция. А – амальгамная, К – кольцевая, У – U-образная, Б – быстрого запуска, Р – рефлектнорая.
  • Цифра обозначает мощность лампы в Ватт.
Читайте так же:
Технические характеристики и сфера применения провода ПУНП

Также естественный белый цвет может маркироваться символами ЛЕ — естественный и ЛХЕ – холодный естественный.

Лампы специального назначения также имеют свою маркировку. Буквами ЛН, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР, ЛУФ маркируются лампы цветного свечения.

В зарубежной маркировке используется трехзначный код и подпись на английском языке. В цифровой форме записывается индекс цветопередачи (первая цифра в формате 1х10 Ra) и цветовая температура (последние 2 цифры). В домах применяются источники с маркировкой 830, 840, 930.

Утилизация лампочек

Вредные вещества, входящие в состав лампы, требуют особой утилизации прибора после выхода из строя. Выбрасывать лампы вместе с бытовым мусором запрещено – это может привести к ухудшению экологической среды.

Чтобы правильно утилизировать приборы, созданы специальные пункты сбора. Они есть в управляющих компаниях района, это прописано по закону. Сдать лампочку можно бесплатно.

Что такое и какие бывают люминесцентные лампы дневного света

Вся планета давно уже обеспокоена вопросом экономии электроэнергии. Обычные лампы накаливания уже можно признать морально устаревшими. Низкий КПД, а об энергосбережении вопрос можно и не поднимать. При их работе экономии электроэнергии просто не существует. Поэтому одним из вариантом будут газоразрядные излучатели. Они созданы в России под руководством С.И. Вавилова в 1936 году.

Лампы люминесцентные (газоразрядные) — это колба с парой электродов. Им можно придать любую форму. При подаче напряжения между электродами начинается эмиссия электронов (тлеющий разряд), создающая излучение света. Свет этот мы не можем видеть. Спектр в ультрафиолетовом диапазоне. Чтобы мы могли получить видимый свет (длина волны должна быть в пределах видимого нами спектра) внутреннюю поверхность колбы покрывается веществом, которое может излучать видимый свет – люминофором. При разряде люминофор начинает светиться. Герметичная колба заполнена инертным газом и парами ртути. Ее наличие необходимо для тлеющего разряда. Жидкий металл его усиливает. Инертный газ безвреден для человека, так как он не вступает ни в какие химические реакции. Но, ртуть – метал опасный для человека. Поэтому возникают проблемы утилизации и вопросы о том, как избежать ртутного заражения.

Принцип работы источника дневного света

Принцип работы и устойство ламп

Показатели спектральной цветопередачи существенно выше, чем у раскаленной вольфрамовой нити. Их свет дает натуральные оттенки, для глаз такое освещение более полезно, а глаза устают меньше.

Условно выделено три типа газоразрядных источников света – низкого (не более 0,01 МПа), высокого (0,1 МПа до 1 МПа) и сверхвысокого давления (более 1МПа). Они имеют значительные различия в конструкции.

Устройство люминесцентной лампы

При подаче напряжения электроды (катоды) разогреваются, между ними возникает тлеющий разряд, который вызывает свечение люминофорного покрытия.

Для создание ультрафиолетового излучения применяется газоразрядные источники . Их отличие состоит лишь в том, что применяется кварцевое стекло для изготовления колбы. Люминофорное покрытие отсутствует.

Обычное стекло его не пропускает. Такие приборы применяются часто в соляриях и для обеззараживания помещений.

Как подключить люминесцентную лампу

Классическая схема подключения одной ЛЛ

В традиционной схеме всего три элемента:

  1. Сам люминесцентный источник света,
  2. Стартер,
  3. Дроссель.

Дроссель представляет собой обычную катушку индуктивности с наборным сердечником из пластин. Стартер – устройство, состоящее из малогабаритной неоновой лампы и конденсатора. Внутри ее колбы находятся подвижные биметаллические контакты. В момент подачи напряжения между биметаллическими контактами стартера возникает разряд, его электроды изменяют свою геометрию и замыкают цепь. Дроссель играет роль балласта. Электроды источника света прогреваются, стартер отключается, возникает тлеющий разряд, вызывающий свечение люминофора, нанесенного на внутреннюю сторону колбы. Согласно ГОСТам, схема должна включиться в течение максимум 10 секунд.

Для включения двух ламп не нужно дублировать схему. Можно использовать только один дроссель.

Схема подключения двух люминесцентных ламп (ЛЛ)

Обе этих схемы можно дополнить конденсатором, включенным параллельно к источнику питания. Это улучшит режим. В первой схеме параметры мощности источника света, дросселя, стартера должны совпадать. Во второй схеме параметры дросселя должны быть равны сумме мощностей двух ламп, а параметры стартеров должны соответствовать мощности каждой из ламп.

Выбор конденсатора осуществляется исходя из номинала мощности ЛЛ. Конденсатор в таком источнике света служит для компенсации реактивной мощности, и при отсутствии её учёта как бы не обязателен. Есть — хорошо, нет — ничего страшного. Не редко, при перепадах напряжения или некачественном конденсаторе происходит его возгорание.

Люминесцентные лампы (ЛЛ)

Мощность лампы, Вт

Параллельно включенный конденсатор 250 В, мкФ

Существует и так называемая схема холодного старта. Она позволяет запустить даже лампу со сгоревшими электродами. Кроме того, схема с умножителем напряжения увеличивает период эксплуатации источника света.

/> Принципиальная схема питания лампы постоянным током

Этот вариант несколько сложнее и применяется при мощностях не более 40 Вт. Здесь лампа питается постоянным током и включение происходит практически мгновенно, так как выпрямленное напряжение суммируется. Довольно быстро ртуть будет скапливаться в районе одного из электродов, при этом яркость падает. В этом случае достаточно поменять полярность. Конденсаторы С1 и С2 должны иметь напряжение порядка 900 В. А С3 и С4 – от 1000 В. Обычно применяют слюдяные конденсаторы. На электроды прикладывается напряжение порядка 900 Вольт. Со временем люминофор конечно же выгорит, и лампа будет подлежать замене и утилизации. Эта хороша тем, что позволят применять лампы с электродами, находящимися в обрыве.

Существуют и полностью готовые решения – ЭПРА. Это полностью полупроводниковое устройство, которое пришло на смену электромагнитной классике.

Внешний вид ЭПРА

Собрать готовый светильник с ним очень просто.

Читайте так же:
Как подобрать автоматический выключатель по мощности нагрузки

На входные клеммы устройства подается напряжение питания. Выходные клеммы предназначены для непосредственного подключения лампы.

Достоинства электронного пуско-регулирующего аппарата:

  • Простота подключения.
  • Повышает срок эксплуатации лампы.
  • Снижает время включения лампы.
  • Отсутствует мерцание при запуске.
  • Долговечность.

Подробнее о ЭПРА вы можите прочитать — тут

Осветители на лампах высокого давления имеют такую схему.

Схема питания ДРЛ

Дроссель выполняет роль балластного устройства. Предохранитель защищает лампу и дроссель от скачка напряжения.

Как проверить люминесцентную лампу

Неисправности могут визуально проявляться таким образом.

  • Лампа не зажигается совсем.
  • Наблюдается мерцание при работе.
  • Мерцание перед выходом на рабочий режим.
  • Гудение.
  • Мерцание при горении.

Во время эксплуатации газоразрядные лампы могу потерять работоспособность. При сборке осветительного прибора на основе люминесцентных ламп иногда источник света желательно проверить до установки.

Первоначально требуется провести осмотр на наличие повреждений. Если колба имеет повреждения, то использовать такую лампу нельзя. То же самое касается и сеточки трещин. Такая колба во время работы однозначно разрушится, а ртуть может привести к заражению помещения.

Вторым моментом следует осмотреть колбу в районе расположения электродов, там не должно быть потемнений на внутренней стороне.

Деградация люминофора в ЛЛ

Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это — щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.

Если на контактах электродной нити, либо по краям самой газоразрядной лампы видно оранжевое свечение, при этом освещение не включается, то это говорит о разгерметизации колбы, внутри уже присутствует воздух.

Довольно часто причина отсутствия освещения банальна: отсутствие контакта. Дело в том, что контактные пластины и контактные штырьки для подключения электродов окисляются. Иногда они могут просто быть ослаблены. Восстанавливается это достаточно быстро, их следует почистить при помощи мелкозернистой наждачки, либо жидкости на основе спирта. Отлично подходит для этих целей изопропиловый спирт (он же изопропанол). Также не произойдет розжига при низких температурах (менее минус 50 градусов Цельсия) и при скачках напряжения свыше семи процентов.

Целостность электродов можно проверить еще и мультиметром. Режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.

При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.

Типы цоколей ламп дневного света

Вне зависимости от конструкции лампы, она в любом случае будет оборудована цокольными элементами. Это обязательный элемент. Они служат для подключения и подачи электрического тока на электроды осветительного прибора. Цоколь предназначен для надежного крепления и обеспечения контакта. При покупке обязательно надо обратить внимание на тип цоколя, в противном случае просто не удастся установить лампу. Цоколь и патрон обязательно должны взаимно соответствовать.

Типы цоколей

Классифицировать их можно на две большие категории: резьбовые и штыревые. В последнее время резьбовые имеют более широкое распространение. Их можно назвать классикой. В быту они используются без каких-либо переделок патрона, т.е. люминесцентную лампу с цоколем Е14 и Е27 можно применить вместо обычных ламп накаливания. Основными техническими показателями являются диаметр и расстояние между витками.

Штыревые цоколи люминесцентных ламп расположены как правило у торцов источника света. Это могут быть и прямые, и U-образные лампы.

Маркировка и технические характеристики

Напряжение в сети питания переменного тока в разных странах различается. К примеру, в странах бывшего СССР принято значение 220 Вольт, в США, Японии и других странах – 110 Вольт.

У нас востребованы осветительные приборы с цоколями Е14, Е27, Е40. Обычно марк ировка осуществляется в формате Ехх. Буква «Е» — общепринятая, от фамилии изобрет ателя Эдисона (Edison). А хх – это цифры, означающие диаметр в мм.

Е14 – самый маленький из упомянутых. Обычно для небольших лампочек в виде свечи. Может применяться для подсветки и маленьких светильников.

Е27 – основной для нашей страны. Сейчас он применяется и для ламп накаливания, энергосберегающих и светодиодных.

Е40 – в быту практически не встречаются и предназначены для мощных осветителей. В основном он принят на производственных предприятиях, где света должно быть много. Или, например, уличное освещение.

Есть еще и Е10, но он применяется для низковольтных ламп накаливания, например может применяться в елочных гирляндах. Лампы с таким цоколем не применяются для освещения, только для декоративных целей.

На лампах со штыревым цоколем маркировка в обязательном порядке содержит латинскую букву G. После идут цифры, которые означают дистанцию между центрами штырьков в миллиметрах. Перед цифрами может дополнительно размещаться одна из букв U, X, Y, Z.

Существует российская и международная маркировка осветительных приборов.

Западная маркировка

голоса
Рейтинг статьи
Ссылка на основную публикацию