Akva-tehnik.ru

Отделка дома своими руками
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обзор систем отопления жилых и административных зданий: примеры расчета, нормативные документы

Обзор систем отопления жилых и административных зданий: примеры расчета, нормативные документы

ГОСТ Р 54860-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Общие положения методики расчета энергопотребности и эффективности систем теплоснабжения

Heat supply of buildings. General guidelines of methods for calculation of energy requirements and efficiencies for heat supply systems

Дата введения 2012-05-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "Проектный, конструкторский и научно-исследовательский институт "СантехНИИпроект" (ОАО "СантехНИИпроект")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 Настоящий стандарт разработан с учетом основных нормативных положений европейского регионального стандарта ЕН 15316-1:2007* "Системы отопления в зданиях. Метод расчета требований энергетических систем и эффективности системы. Часть 1. Общие требования" (EN 15316-1:2007 "Heating systems in buildings — Method for calculation of systems energy requirements and system efficiencies — Part 1: General", NEQ).

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Наименование настоящего стандарта изменено по отношению к наименованию европейского стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5)

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок — в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Введение

Настоящий стандарт является частью ряда стандартов, целью которых является гармонизация методик расчета энергетической эффективности зданий в соответствии с Федеральными законами [1] и [2], а также основополагающими требованиями [3].

Серия стандартов ГОСТ Р ЕН 15316* "Системы теплоснабжения в зданиях. Методика расчета энергопотребности и эффективности системы теплоснабжения" состоит из следующих частей:

* Вероятно ошибка оригинала. Следует читать: Серия стандартов ГОСТ Р "Теплоснабжение зданий", здесь и далее по тексту. — Примечание изготовителя базы данных.

— часть 1 Общие положения;

— часть 4-1 Установки теплогенерации и топливосжигающие (котлы);

— часть 4-2 Системы теплогенерации, тепловые насосы;

— часть 4-3 Системы теплогенерации, солнечные установки;

— часть 4-4 Комбинированные системы генерации, интегрированные в здании (когенерация);

— часть 4-5 Системы теплогенерации централизованных систем теплоснабжения;

— часть 4-6 Системы теплогенерации, фотоэлектрические системы;

— часть 4-7 Системы теплогенерации, системы сгорания биомассы.

ГОСТ Р ЕН 15316-1* устанавливает общие положения методики расчета энергетических потребностей и энергоэффективности систем отопления, нагрева воздуха и горячего водоснабжения (далее — систем теплоснабжения).

* Вероятно ошибка оригинала. Следует читать: ГОСТ Р 54860-2011, здесь и далее по тексту. — Примечание изготовителя базы данных.

В других частях серии стандартов ЕН 15316 представляются различные методики расчета энергетических потребностей и энергоэффективности системы теплоснабжения, которые могут быть использованы для оптимизации энергетических характеристик проектируемых систем теплоснабжения с подачей тепла от автономных и комбинированных источников, теплонасосных и солнечных систем теплоснабжения.

Методики расчета энергетических потребностей и энергоэффективности систем теплоснабжения применяются для:

— оценки соблюдения требований, указанных в качестве энергетических показателей;

— оптимизации общей энергетической эффективности проектируемого здания посредством выбора и сопоставления различных технических решений;

— определения уровня энергетической эффективности существующего здания;

— применения мероприятий по энергосбережению в существующем здании, оценки их путем сравнения потребления энергоресурсов для вариантов с энергосберегающими мероприятиями и без них;

— прогноза потребления энергоресурсов путем расчета потребления энергии различными репрезентативными зданиями для всего строительного фонда.

1 Область применения

Настоящий стандарт устанавливает структуру расчета энергопотребности систем теплоснабжения в зданиях и необходимые для расчетов входные и выходные параметры с целью разработки единой методики расчета.

Методика расчета позволяет выполнять энергетический анализ различных частей (подсистем) теплоснабжающей системы, включая регулирование теплопередачи, распределения, сохранения и производства тепла, путем последовательного определения энергетической эффективности и потерь энергии в отдельных подсистемах. Данный анализ дает возможность сравнивать и контролировать воздействие каждой отдельной подсистемы на общую энергетическую эффективность системы теплоснабжения здания.

Расчеты энергетических потерь каждой части установки, подсистемы системы теплоснабжения здания установлены в [4]-[15]. Тепловые потери при передаче тепла, вторичные тепловые энергоресурсы, возвратные тепловые потери и дополнительная энергия частей установок и подсистем системы теплоснабжения здания, которые учитываются при определении общей потребляемой энергии в здании, суммируются. Тепловые потери системы теплоснабжения относятся к общей потребляемой энергии в здании согласно [16].

Требования настоящего стандарта не распространяются на системы вентиляции (например, установки с рекуперацией). Если воздух в таких системах подогревается или в них встраивается система подогрева воздуха, то энергетические потери данных установок рассчитываются в соответствии с настоящим стандартом.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Читайте так же:
Как правильно сделать освещение в парной бани своими руками

3 Термины, определения, обозначения и единицы измерения

3.1 Термины и определения

В настоящем стандарте применены термины по [4]-[15]:

3.1.1 аккумулированное тепло (heat gains): Сохранение и накопление тепла в аккумуляторах солнечной энергии или холода наружного воздуха ночью, не связанные с внешним подводом тепла за счет энергосистем или выработки ее автономными установками.

Примечание — К аккумуляторам относятся внутренние накопители тепла и накопители тепла солнечной энергии. Трубопроводы, которые отводят тепло от здания, рассматриваются как накопители с отрицательным знаком. В противоположность теплообмену разность температур между рассматриваемым помещением и источником в случае теплового источника (или теплоотвода) не является движущей силой потока тепла.

3.1.2 возвратные тепловые потери установок (recoverable system thermal loss): Часть тепловых потерь установок, которые при повторном использовании их в системах отопления, кондиционирования или горячего водоснабжения могут снизить потребление первичной энергии.

3.1.3 возобновляемая энергия (renewable energy): Энергия, полученная при использовании энергоресурса, запасы которого не уменьшаются вследствие добычи, например, солнечная энергия (термическая и фотоэлектрическая), ветер, движущая сила воды, регенеративная биомасса.

Примечание — В [17] возобновляемые ресурсы имеют следующее определение: "Природные ресурсы, при использовании которых отношение возобновляемых природных ресурсов к добыче данных ресурсов из природы (для использования в сфере технологий) больше или равно единице".

3.1.4 вторичные тепловые энергетические ресурсы (recovered system thermal loss): Часть возвратных тепловых потерь установок (подсистем), которая может возвращаться и использоваться в системах отопления или кондиционирования, горячего водоснабжения или охлаждения.

3.1.5 высшая теплотворная способность топлива (gross calorific value): Количество теплоты, приведенное к единице веса объема топлива, выделенное при сжигании при постоянном давлении 101320 Па в кислороде и охлаждении продуктов сгорания до температуры окружающей среды.

1 Данная величина содержит скрытую теплоту конденсации водяного пара, содержащегося в топливе, и водяного пара, образованного от сгорания водорода, содержащегося в топливе.

2 В соответствии с [18] вместо высшей теплотворной способности преимущественно применяется низшая теплотворная способность топлива.

3 При низшей теплотворной способности нельзя учесть скрытую теплоту парообразования при конденсации.

3.1.6 горячее водоснабжение (domestic hot water heating): Процесс нагрева холодной воды в нагревателях до заданной температуры.

3.1.7 дополнительная энергия (auxiliary energy): Электрическая энергия, используемая инженерными установками и системами зданий для отопления, кондиционирования, механической вентиляции и горячего водоснабжения с целью обеспечения коммунальных услуг здания.

1 Дополнительная энергия включает в себя электрическую энергию, расходуемую на приводы вентиляторов, насосов, регулирующих и запорных клапанов, автоматики и т.д. Электрическая энергия, подаваемая в систему вентиляции для перемещения воздуха и возврата теплоты, считается не дополнительной энергией, а энергией, потребляемой для вентиляции.

2 В [19] энергия для насосов и клапанов относится к "паразитной" энергии.

3.1.8 здание (building): Результат строительства, представляющий собой объемную строительную систему, имеющую надземную и (или) подземную части, включающую в себя помещения, сети и системы инженерно-технического обеспечения и предназначенную для проживания и (или) деятельности людей, размещения производства, хранения продукции или содержания животных [4].

Примечание — Данное определение может относиться к зданию в целом или к отдельным частям здания, которые могут использоваться отдельно.

3.1.9 измеряемые энергетические параметры (energy rating): Оценка общей энергетической потребности здания на основе рассчитанного или измеренного при эксплуатации расхода первичных энергоресурсов.

3.1.10 использование энергии для естественной и механической вентиляции: Расход дополнительной энергии на приводы вентиляторов, регулирующих клапанов и др.

Примечание — Расход энергии на подогрев или охлаждение приточного воздуха определяется в расчетах на отопление или охлаждение.

3.1.11 источник энергии (energy source): Первичный органический или возобновляемый энергоресурс.

Примечание — Примерами источников энергии служат нефтяные или газовые месторождения, угольные рудники (первичные органические), ветер, солнце, леса (возобновляемые ресурсы) и т.д.

3.1.12 кондиционируемая зона (conditioned zone): Отапливаемая или охлаждаемая часть объема помещения с заданной температурой, для которой допустимые температурные колебания регулируются системами отопления и кондиционирования.

3.1.13 кондиционируемый объем (conditioned space): Отапливаемый или охлаждаемый объем помещения.

3.1.14 кондиционируемая площадь (conditioned area): Полезная площадь кондиционируемых зон, включая полезную площадь всех этажей, за исключением площади не пригодных для пребывания людей помещений или частей зон.

Примечание — Допускается также определять полезную площадь помещений с вентиляцией, освещением и др.

3.1.15 комбинированное теплообразование (когенерация) (cogeneration, combined head and power): Комбинированная выработка тепловой и электрической энергии или механической энергии.

3.1.16 коэффициент выброса СО (эквивалент эмиссии СО) (СО emission coefficient): Количество выброшенного в атмосферу СО на единицу измерения затраченной энергии.

Примечание — Коэффициент выброса СО может также содержать эквивалентные выбросы по отношению к используемому топливу (см. приложение Г).

Обзор систем отопления жилых и административных зданий: примеры расчета, нормативные документы

Об актуальных изменениях в КС узнаете, став участником программы, разработанной совместно с АО «Сбербанк-АСТ». Слушателям, успешно освоившим программу выдаются удостоверения установленного образца.

Программа разработана совместно с АО «Сбербанк-АСТ». Слушателям, успешно освоившим программу, выдаются удостоверения установленного образца.

Обзор документа

Приказ Министерства строительства и жилищно-коммунального хозяйства РФ от 11 октября 2017 г. № 1422/пр “Об утверждении критериев наличия технической возможности установки оборудования, обеспечивающего в системе внутреннего теплоснабжения здания поддержание гидравлического режима, автоматическое регулирование потребления тепловой энергии в системах отопления и вентиляции в зависимости от изменения температуры наружного воздуха, приготовление горячей воды и поддержание заданной температуры в системе горячего водоснабжения непосредственно в здании”

В соответствии с пунктом 2 постановления Правительства Российской Федерации от 7 марта 2017 г. № 275 «О внесении изменений в некоторые акты Правительства Российской Федерации по вопросам установления первоочередных требований энергетической эффективности для зданий, строений, сооружений» (Собрание законодательства Российской Федерации, 2017, № 12, ст. 1719) приказываю:

Читайте так же:
Виды цоколей светодиодных лампочек — резьбовые и штыревые

1. Утвердить критерии наличия технической возможности установки оборудования, обеспечивающего в системе внутреннего теплоснабжения здания поддержание гидравлического режима, автоматическое регулирование потребления тепловой энергии в системах отопления и вентиляции в зависимости от изменения температуры наружного воздуха, приготовление горячей воды и поддержание заданной температуры в системе горячего водоснабжения непосредственно в здании согласно приложению к настоящему приказу.

2. Контроль за исполнением настоящего приказа возложить на заместителя Министра строительства и жилищно-коммунального хозяйства Российской Федерации А.В. Чибиса.

МинистрМ.А. Мень

Зарегистрировано в Минюсте РФ 9 февраля 2018 г.

Приложение
к приказу Министерства строительства
и жилищно-коммунального хозяйства
Российской Федерации
от 11 октября 2017 г. № 1422/пр

Критерии
наличия технической возможности установки оборудования, обеспечивающего в системе внутреннего теплоснабжения здания поддержание гидравлического режима, автоматическое регулирование потребления тепловой энергии в системах отопления и вентиляции в зависимости от изменения температуры наружного воздуха, приготовление горячей воды и поддержание заданной температуры в системе горячего водоснабжения непосредственно в здании

1. Критерии наличия технической возможности установки оборудования, обеспечивающего в системе внутреннего теплоснабжения здания поддержание гидравлического режима, автоматическое регулирование потребления тепловой энергии в системах отопления и вентиляции в зависимости от изменения температуры наружного воздуха, приготовление горячей воды и поддержание заданной температуры в системе горячего водоснабжения непосредственно в здании (далее — оборудование автоматизированного регулирования) устанавливаются в целях определения возможности использования оборудования автоматизированного регулирования в целях снижения потребления энергетических ресурсов в общественном, административном здании и многоквартирном доме (далее — здание) и создания комфортных условий для находящихся в указанных зданиях людей.

2. К критериям, соблюдение которых дает техническую возможность установки оборудования автоматизированного регулирования в здании, относятся:

а) наличие помещения общественного, административного здания или помещения многоквартирного дома, относящегося к общему имуществу многоквартирного дома, соответствующего требованиям, установленным законодательством Российской Федерации о техническом регулировании (далее — помещение);

б) обеспечение в помещении соблюдения предъявляемых в соответствии с законодательством Российской Федерации о техническом регулировании обязательных требований к условиям эксплуатации оборудования автоматизированного регулирования соответствующего вида, которые необходимы для его надлежащего функционирования;

в) наличие возможности подключения оборудования автоматизированного регулирования к системе электроснабжения здания, или наличие возможности подключения оборудования автоматизированного регулирования к резервному источнику электроснабжения, или наличие в системе отопления здания защиты от аварии в период перерыва в электроснабжении (путем предотвращения поступления в систему отопления теплоносителя с превышением предельно допустимой температуры, установленной законодательством Российской Федерации о техническом регулировании, или остывания теплоносителя, находящегося в системе отопления зданий, до температуры его замерзания при соблюдении требований законодательства Российской Федерации, устанавливающих минимально допустимые значения температуры воздуха в жилых помещениях на период перерыва электроснабжения);

г) наличие возможности установки датчика температуры наружного воздуха, обеспечивающей точность измерения указанной температуры вне зависимости от влияния погодных условий.

Обзор документа

С 1 января 2018 г. при новом строительстве (для всех типов зданий) и капремонте (за исключением жилых зданий) должно быть установлено оборудование, позволяющее обеспечивать автоматическое регулирование потребления тепла в системах отопления и вентиляции в зависимости от температуры наружного воздуха с поддержанием заданной температуры горячей воды в системе горячего водоснабжения.

Определены критерии наличия технической возможности установки такого оборудования. В частности, для установки такого оборудования требуется соответствующее помещение, подключение оборудования к системе электроснабжения здания или резервному источнику электроснабжения либо наличие в системе отопления здания защиты от аварии в период перерыва в электроснабжении.

Системы отопления жилых и общественных зданий

В журнале «АВОК», 2005, № 2, с. 44-45 была опубликована статья В. С. Касаткина «О некоторых проектных решениях отопления и теплоснабжения жилых и общественных зданий», которая основана на новых требованиях, изложенных в СНиП 4101-2003.

Автор нижеприведенной статьи, в целом разделяя взгляды В. С. Касаткина, счел уместным предложить некоторые уточнения, а в некоторых случаях и поспорить с коллегой.

Теплопункты и магистральные трубопроводы

В обсуждаемой статье описывается проектное решение, при котором стояки присоединяются не к вет-вям, проложенным по периметру здания, а к коллектору теплопункта. При этом обратные трубопроводы, прокладываемые по техническим помещениям, не теплоизолируются.

Автоматизированный теплопункт, выполненный в соответствии с требованиями СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование», позволяет решить проблему завышенной по отношению к температурному графику температуры теплоносителя в обратной магистрали, а прокладка обратных трубопроводов без теплоизоляции может привести к теплоизбыткам в помещениях, где они проложены, и, следовательно, к непроизводительным потерям тепла.

Принятие данного проектного решения должно обосновываться расчетом теплового баланса помещений.

Расположение распределительных коллекторов для стояков в помещениях теплопунктов представ-ляется оправданным, однако здесь следует внести уточнение.

В [1] стояки присоединяются к коллекторам через балансировочный клапан и шаровый кран. Безусловно, это решение продиктовано стремлением заказчика к снижению капитальных затрат, т. к. стояки двухтрубных систем должны оснащаться регуляторами перепада давления, которые стоят несколько дороже.

Здесь уместно отметить, что при большой разнице в нагрузках стояков и их удаленности от теплопункта целесообразно применять регуляторы, комплектуемые не шаровыми кранами, а балансировочными вентилями (рис. 1). Это позволит избежать граничных значений преднастроек регуляторов и решить часть вопросов пусконаладки на стадии проектирования.

Читайте так же:
Почему трещит и искрит когда включаешь свет

Регулятор перепада давлений, комплектуемый балансировочным вентилем, позволяет увязать ветви в большом диапазоне нагрузок и гидравлических сопротивлений

Важным преимуществом расположения всех отключающих, сливных и регулирующих устройств в теплопункте, помимо удобства обслуживания, является ограничение доступа к арматуре посторонних лиц.

Что касается материалов магистральных трубопроводов, то по соображениям противопожарной и общей безопасности чаще применяются трубы из стали или меди 1 .

Стояки и вводы в квартиры (офисы)

При поквартирной разводке диаметры условного прохода стояков нередко достигают Ду 50. Чаще всего они выполняются из тех же материалов, что и магистральные трубопроводы.

Необходимость соблюдения противопожарных норм, решения компенсации температурных расширений и обеспечения доступа к арматуре и приборам учета эксплуатационного персонала делает задачу размещения стояков весьма непростой.

В [1] достаточно подробно освещен этот вопрос. При этом привлекает внимание решение по размещению узла подключения абонента (квартиры) к стояку выше отметки верха отопительного прибора, что призвано обезопасить абонентскую систему от завоздушивания и коррозии при сливе стояка или всей системы. Иными словами, это превентивная мера против неправильной эксплуатации, а не инженерное решение в «чистом» виде.

Узлы присоединения радиаторов с нижним подводом теплоносителя, оборудованные устройствами для отключения, слива и заполнения прибора, позволяют отключать, сливать, демонтировать, монтировать вновь и заполнять отдельный прибор при работающей системе.

Специальный инструмент позволяет заменять буксы термостатических клапанов даже без слива обслуживаемого прибора.

Все эти устройства созданы с целью исключения необходимости слива системы из-за проблем с радиатором или термостатическим клапаном. Если необходимость слива квартирной системы неизбежна, то к сливной арматуре системы присоединяют шланг, выводят его в емкость, устанавливаемую на лестничной клетке на 3–4 ступени ниже уровня пола обслуживаемой квартиры, и, перекрыв вводную арматуру, вывертывают воздухоотводчики приборов и открывают сливные краны.

Это позволяет опорожнить квартирную систему почти полностью (в трубах все-таки остается 2–3 литра воды). Это является недостатком предлагаемого в [1] способа подключения квартирной системы к стояку (а для двухуровневых квартир он и вовсе неприменим); тем не менее, подобные решения могут быть рассмотрены при проектировании.

Внутриквартирная разводка и отопительные приборы

От узла ввода в квартиру, оборудованного отключающей арматурой 2 , фильтром, прибором учета теплоэнергии и внутриквартирным коллектором, трубопроводы разводятся к приборам либо по лучевой схеме, либо (что встречается чаще) – к одной-двум группам приборов по двухтрубной схеме вдоль наружных стен.

Разводка выполняется из медных труб, а чаще – из металлополимерных, т. к. при малых диаметрах они предпочтительнее по стоимости материалов и работ, а также по удобству монтажа.

Кроме того, понижение расчетных параметров теплоносителя до европейских норм (75–65 °C) приближает расчетный срок их службы к декларируемому производителями.

Недостаток этих труб (а также медных труб в бухтах) – необходимость скрытой прокладки – устраняется применением радиаторов с нижней подводкой теплоносителя и встроенными термостатическими клапанами (рис. 2).

Применение отопительного прибора со встроенным термостатическим клапаном и нижним подводом теплоносителя позволяет решить целый ряд проблем внутриквартирной разводки

Применение таких приборов решает еще целый ряд задач:

• эстетичный внешний вид не провоцирует потребителя на замену прибора из соображений дизайна;

• во время декоративного ремонта помещения прибор можно снять при работающей системе;

• встроенный термостатический клапан, выполняющий заодно и функцию балансировочного, позволяет монтировать термоголовку вдоль оси стены, что намного удобнее перпендикулярного расположения термоголовки, имеющего место при применении «внешнего» терморегулятора, выполненного в виде трубопроводной арматуры проходного или углового исполнения;

• возможность преднастройки термоклапана, а также наличие механизма отключения, слива и заполнения прибора, что во многих случаях позволяет отказаться от лучевой схемы внутриквартирной разводки в пользу периметральной, сохранив преимущества первой и избежав ее недостатков;

• наличие нескольких типоразмеров по высоте и по глубине позволяет подобрать прибор с заданной теплоотдачей по ширине оконного проема 3 ;

• малая емкость прибора позволяет снизить емкость системы и (в независимых контурах) сэкономить на расширительном баке.

По своим конструктивным особенностям приборы с нижним подводом теплоносителя и встроенным термоклапаном не могут быть секционными и изготавливаются из стали или меди.

Отопительные приборы других конструкций применяются в комплексе с проектными решениями по присоединениям трубопроводов и арматуры.

Разобраться во всем многообразии отопительных приборов и в особенностях их применения призваны Стандарты АВОК (в частности, стандарт «Приборы отопительные. Часть 1. Общие технические условия», изданный в январе 2005 года).

В любом случае, все компоненты системы теплоснабжения (оборудование, отопительные приборы, трубы, фитинги, арматура) должны подбираться с учетом не только расчетных параметров теплоносителя, но и с учетом недопущения электрохимической коррозии, связанной с применением разнородных материалов.

В [1] автор не остановился на детализации внутриквартирной системы, ограничившись простым перечислением ее компонентов, однако из его подробного описания принципиальных решений по теплопункту и магистралям нетрудно сделать вывод о постоянном противодействии со стороны заказчика принятию любых решений, связанных с увеличением первоначальных затрат. Эффективность этих решений, с точки зрения эксплуатации системы, волнует заказчика в последнюю очередь, поскольку строят здания одни, а эксплуатируют – другие.

Простое решение проблемы: кто строит, тот и эксплуатирует (в некоторых регионах закрепленное на законодательном уровне), например, в Нижнем Новгороде не привилось (отдельные фирмы, взявшие на эксплуатацию построенные здания – не правило, а исключение, хотя разница в результатах огромна).

Данная статья затрагивает небольшую часть вопросов, связанных с проектированием современных отопительных систем и поднятых в [1], и имеет целью привлечь специалистов к продолжению обсуждения проектных решений, в частности, при проектировании отопления для организаций, берущих построенные здания на эксплуатацию, и при проектировании отопления в зданиях сложных архитектурных форм.

Читайте так же:
Расшифровка маркировки и сферы применения провода ПУГВ

Литература

1. Касаткин В. С. О некоторых проектных решениях систем отопления и теплоснабжения жилых и общественных зданий //АВОК. 2005. № 2.

Тел. (8312) 35-72-59

1 Термин «пластиковые трубы», используемый в [1], представляется не совсем удачным. В системах отопления применяются металлополимерные и полимерные с противодиффузионным покрытием трубы, сертифицированные ФГУП «НИИсантехники». Эти трубы чаще применяются для внутриквартирной разводки.

2 Гидравлическую увязку участков стояка выполняют балансировочные клапаны, играющие роль одного из отключающих устройств на вводах в квартиры. В этом случае значительно облегчается и гидравлический расчет отопительных систем однотипных квартир, т. к. располагаемые напоры на вводах можно уравнять.

3 Рекомендации по применению стальных панельных радиаторов «VONOVA» / ФГУП «НИИсантехники». М., 2004.

Поделиться статьей в социальных сетях:

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.

Статья опубликована в журнале “АВОК” за №6’2005

распечатать статьюраспечатать статью —>

Обсудить на форумеОбсудить на форуме
Предыдущая статья
Следующая статья

Обзор систем отопления жилых и административных зданий: примеры расчета, нормативные документы

Создание эффективной системы отопления больших зданий существенно отличается от аналогичных автономных схем коттеджей. Разница заключается в сложности распределения и контроля параметров теплоносителя. Поэтому следует ответственно отнестись к выбору системы отопления зданий: виды, типы, расчеты, обследования. Все эти нюансы учитываются еще на стадии проектирования сооружения.

Требования к отоплению жилых и административных зданий

Схема теплоснабжения многоквартирного дома

Схема теплоснабжения многоквартирного дома

Следует сразу отметить, что проект отопления административного здания должен выполняться соответствующим бюро. Специалисты оценивают параметры будущего здания и согласно требованиям нормативных документов выбирают оптимальную схему теплоснабжения.

Независимо от выбранных видов систем отопления зданий, к ним предъявляются жесткие требования. Они базируются на обеспечении безопасности функционирования теплоснабжения, а также эффективности работы системы:

  • Санитарно-гигиенические. К ним относятся равномерное распределение температуры во всех помещениях дома. Для этого предварительно выполняется расчет тепла на отопление здания,
  • Строительные. Работа отопительных приборов не должна ухудшаться из-за особенностей конструктивных элементов здания как внутри, так и снаружи его,
  • Монтажные. При выборе технологических схем установки рекомендовано выбирать унифицированные узлы, которые можно будет оперативно заменить на аналогичные в случае выхода из строя,
  • Эксплуатационные. Максимальная автоматизация работы теплоснабжения. Это является первичной задачей наряду с теплотехническим расчетом отопления здания.

На практике используют проверенные схемы проектирования, выбор которых зависит от типа отопления. Это является определяющим фактором для всех последующих этапов работы по обустройству отопления административного или жилого здания.

При сдаче в эксплуатацию нового дома жильцы вправе потребовать копии всей технической документации, в том числе и системы отопления.

Виды систем отопления зданий

Водяное отопление дома

Водяное отопление дома

Как правильно подобрать определенный тип теплоснабжения здания? Прежде всего учитывается вид энергоносителя. Исходя из этого можно планировать последующие этапы проектирования.

Существуют определенные виды систем отопления зданий, отличающиеся как принципом работы, так и эксплуатационными качествами. Наиболее распространенным является водяное отопления, так как оно обладает уникальными качествами и может быть относительно легко адаптировано к любому типу здания. Выполнив расчет количества тепла на отопление здания можно выбрать следующие типы теплоснабжения:

  • Автономное водяное. Характеризуется большой инертностью нагрева воздуха. Однако наряду с этим является наиболее популярным типом систем отопления зданий из-за большого разнообразия компонентов и низкими затратами на обслуживание,
  • Центральное водяное. В этом случае вода является оптимальным типом теплоносителя для ее транспортировки на большие расстояние – от котельной к потребителям,
  • Воздушное. В последнее время оно применяется в качестве общей системы климатического контроля в домах. Является одной из самых дорогостоящих, что сказывается на обследовании системы отопления здания,
  • Электрическое. Несмотря на небольшие затраты по первичной закупке оборудования, электрическое отопление является самым дорогостоящим в обслуживании. В случае его установки следует максимально точно выполнить расчет отопления по объему здания, чтобы снизить планируемые затраты.

Что рекомендуется выбирать в качестве теплоснабжения дома – электрическое, водяное или воздушное отопление? Прежде всего нужно выполнить расчет тепловой энергии на отопление здания и другие виды проектных работ. На основе полученных данных и подбирается оптимальная отопительная схема.

Для частного дома лучший способ теплоснабжения – установка газового оборудования в совокупности с водяной отопительной системой.

Типы расчета теплоснабжения зданий

Тепловые потери в доме

Тепловые потери в доме

На первом этапе необходимо выполнить расчет тепловой энергии на отопление здания. Суть этих вычислений состоит в определении тепловых потерь дома, подборе мощности оборудования и теплового режима работы отопления.

Для корректного выполнения этих вычислений следует знать параметры здания, учитывать климатические особенности региона. До появления специализированных программных комплексов все расчеты количества тепла на отопление здания выполнялись вручную. При этом была высока вероятность ошибки. Теперь же, применяя современные методы вычислений, можно получить следующие характеристики для составления проекта отопления административного здания:

  • Оптимальная нагрузка на теплоснабжение в зависимости от внешних факторов – температуры на улице и требуемой степени нагрева воздуха в каждой комнате дома,
  • Правильный подбор компонентов для комплектации отопления, минимизация затрат на его приобретение,
  • Возможность в дальнейшем провести обновление теплоснабжения. Реконструкция системы отопления здания выполняется только после согласования старой и новой схем.

Делая проект отопления административного или жилого здания нужно руководствоваться определенным алгоритмом вычислений.

Характеристики системы теплоснабжения должны отвечать действующим нормативным документам. Их перечень можно взять в государственной архитектурной организации.

Вычисление тепловых потерь зданий

Теплопроводность различных строительных материалов

Теплопроводность различных строительных материалов

Определяющим показателем отопительной системы является оптимальное количество вырабатываемой энергии. Она же определяется тепловыми потерями в здании. Т.е. фактически работа теплоснабжения призвана компенсировать это явление и поддерживать температуру на уровне комфортной.

Читайте так же:
Как составить проект электропроводки в частном доме своими руками

Для корректного расчета тепла на отопление здания необходимо знать материал изготовления наружных стен. Именно через них происходит большая часть потерь. Основной характеристикой является коэффициент теплопроводности строительных материалов – количество энергии, проходящей через 1 м² стены.

Технология расчета тепловой энергии на отопление здания заключается в следующих этапах:

  1. Определение материала изготовления и коэффициента теплопроводности.
  2. Зная толщину стены можно рассчитать сопротивление теплопередачи. Это величина обратная теплопроводности.
  3. Затем выбирается несколько режимов работы отопления. Это разница между температурой в подающей и обратной трубе.
  4. Деля получившеюся величину на сопротивление теплопередачи получаем тепловые потери на 1 м² стены.

Коэффициент сопротивления теплопередачи стен

Коэффициент сопротивления теплопередачи стен

Для такой методики нужно знать, что стена состоит не только из кирпича или ж/б блоков. При расчете мощности котла отопления и теплопотерь здания обязательно учитываются теплоизоляция и другие материалы. Общий коэффициент сопротивления телепередачи стены не должен быть меньше нормированного.

Только после этого можно приступать к вычислению мощности отопительных приборов.

Для всех полученных данных для расчета отопления по объему здания рекомендуется прибавить поправочный коэффициент 1,1.

Расчет мощности оборудования для отопления зданий

Котельная многоквартирного дома

Котельная многоквартирного дома

Для вычисления оптимальной мощности теплоснабжения следует начала определиться с его типом. Чаще всего затруднения возникают при расчете водяного отопления. Для корректного вычисления мощности котла отопления и тепловых потерь в доме учитывается не только его площадь, но и объем.

Самый простой вариант – это принять соотношение, что для обогрева 1 м³ помещения потребуется 41 Вт энергии. Однако такое вычисление количества тепла на отопление здания будет не совсем корректно. Оно не учитывает тепловые потери, а также климатические особенности конкретного региона. Поэтому лучше всего воспользоваться методикой, описанной выше.

Для расчета теплоснабжения по объему здания важно знать номинальную мощность котла. Для этого необходимо знать следующую формулу:

W=S*K

Где W – мощность котла, S – площадь дома, К поправочный коэффициент.

Последний является справочной величиной и зависит от региона проживания. Данные о нем можно взять из таблицы.

Зона климатаПоправочный коэффициент
Центральная частьОт 0,1 до 0,15
Северные регионыОт 0,15 до 0,2
Южная часть РоссииОт 0,07 до 0,1

Такая технология позволяет выполнить точный теплотехнический расчет отопления здания. Одновременно выполняется проверка мощности теплоснабжения относительно тепловых потерь в здании. Кроме этого учитывают назначение помещений. Для жилых комнат уровень температуры должен составлять от +18°С до +22°С. Минимальный уровень нагрева площадок и бытовых комнат равен +16°С.

Выбор режима работы отопления практически не зависит от этих параметров. Он определит будущую нагрузку на систему в зависимости от погодных условий. Для многоквартирных домов расчет тепловой энергии на отопление делается с учетом всех нюансов и согласно нормативной технологии. В автономном теплоснабжении подобных действий выполнять не нужно. Важно, чтобы суммарная тепловая энергия компенсировала все тепловые потери в доме.

Для уменьшения затрат на автономное отопление рекомендуется при расчете по объему здания использовать низкотемпературный режим. Но тогда следует увеличить общую площадь радиаторов, чтобы повысить тепловую отдачу.

Обслуживание системы отопления зданий

Тепловизор – прибор для контроля работы отопления

Тепловизор – прибор для контроля работы отопления

После корректного теплотехнического расчета теплоснабжения здания необходимо знать обязательный перечень нормативных документов на ее обслуживание. Это нужно знать для своевременного контроля работы системы, а также минимизации появления аварийных ситуаций.

Составление акта осмотра системы отопления здания происходит только представителями ответственной компании. При этом учитывается специфика теплоснабжения, его вид и текущее состояние. Во время обследования системы отопления здания должны заполняться следующие пункты документа:

  1. Местонахождение дома, его точный адрес.
  2. Ссылка на договор о поставке тепла.
  3. Количество и местонахождение приборов теплоснабжения – радиаторов и батарей.
  4. Замер температуры в помещениях.
  5. Коэффициент изменения нагрузки в зависимости от текущих погодных условий.

Для инициации обследования отопительной системы дома необходимо подать заявление в управляющую компания. В нем обязательно указывается причина плохая работа теплоснабжения, аварийная ситуация или несоответствие текущих параметров системы нормам.

Акт осмотра системы отопленияАкт осмотра системы отопления

Согласно текущих норм во время аварии представители управляющей компании должны в течение максимум 6 часов ликвидировать ее последствия. Также после этого составляется документ о причиненном ущербе собственникам квартир из-за аварии. Если причиной является неудовлетворительное состояние – УК должна за свой счет восстановить квартиры или выплатить компенсацию.

Нередко во время реконструкции системы отопления здания необходимо выполнить замену некоторых ее элементов на более современные. Затраты определяются фактом – на чьем балансе состоит отопительная система. Восстановлением трубопроводов и других компонентов, не находящихся в квартирах должна заниматься управляющая компания.

Если же собственник помещения захотел поменять старые чугунные батареи на современные следует предпринять такие действия:

  1. В управляющую компанию составляется заявление, в котором указывается план квартиры и характеристики будущих отопительных приборов.
  2. По истечении 6 дней УК обязана предоставить технические условия.
  3. Согласно им выполняется подбор оборудования.
  4. Монтаж осуществляется за счет собственника квартиры. Но при этом должны присутствовать представители УК.

Для автономного теплоснабжения частного дома ничего этого делать не нужно. Обязанности по обустройству и поддержанию отопления на должном уровне полностью относятся к собственнику дома. Исключения составляют технические проекты электрического и газового отопления помещений. Для них обязательно нужно получить согласие УК, а также выполнить подбор и монтаж оборудования согласно условиям технического задания.

голоса
Рейтинг статьи
Ссылка на основную публикацию