Akva-tehnik.ru

Отделка дома своими руками
19 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое ультрафильтрация воды и зачем она проводится

Ультрафильтрация воды

1. Что такое ультрафильтрация?

Ультрафильтрация воды – это баромембранный процесс, заключающийся в том, что жидкость под давлением «продавливается» через полупроницаемую перегородку. Размер отверстий (пор) ультрафильтрационных мембран лежит в пределах от 5 нм до 0,05–0,1 мкм.

Ультрафильтрация основана на продавливание жидкости через полупроницаемую мембрану — проницаемую для малых молекул и ионов, но непроницаемую для макромолекул и коллоидных частиц.

Главное отличие мембраной фильтрации от обычного объемного фильтрования в том, что подавляющее большинство всех задерживаемых веществ накапливается на поверхности мембраны, образуя дополнительный фильтрующий слой осадка, который обладает своим сопротивлением.

2. Назначение и применение

Установка ультрафильтрации предназначена для очистки воды. Она задерживает взвешенные вещества, микроорганизмы, водоросли, бактерии и вирусы, значительно снижает мутность. Так же она эффективно уменьшает окисляемость и цветность воды. Ультрафильтрация заменяет отстаивание, осаждение и микрофильтрацию.

Можно выделить следующие основные области применения этой перспективной технологии:

a) Обработка поверхностных вод: ультрафильтрация обеспечивает высокое качество питьевой, оборотной и технологической воды с минимальными эксплуатационными затратами.

b) Предподготовка воды перед обессоливающими установками: замена традиционной коагуляции и механической фильтрации ультрафильтрацией позволяет улучшить качество осветленной воды, уменьшить загрязнение мембран и ионообменных смол, увеличить срок их службы.

c) Обработка и вторичное использование хозяйственно-бытовых сточных вод: мировые тенденции направлены на повторное использование очищенных бытовых сточных вод. Выгоднее не сбрасывать их в открытый водоем, а направлять после обработки ультрафильтрацией для промышленного использования.

d) Очистка промышленных сточных вод, обеспечивающая их повторное использование и снижающая техногенную нагрузку на водоемы хозяйственно-питьевого назначения.

e) Обработка промывных вод песчаных фильтров. Ультрафильтрационная обработка промывных вод осветлительных фильтров позволяет повысить степень использования воды до 99,8 %.

3. Типы мембран ультрафильтрации

Мембранные элементы изготавливаются в двух конструктивных исполнениях:

  • Рулонные

Рулонные мембраны работают при значении мутности входной воды (до 0,5 мг/л), Рулонные элементы используются для доочистки питьевой воды или для стерилизации растворов

  • Трубчатые

Трубчатые и половолоконные мембраны работают при значении мутности входной воды (до 40 г/л),

Эти элементы могут работать с поверхностными и сточными водами.

4. Принцип работы

Исходная вода подается на модуль ультрафильтрации при помощи насоса. Перед модулем вода пропускается через грязевик, который отфильтровывает грубые частицы, предохраняя тем самым мембраны.

В линию подачи исходной воды может дозироваться коагулянт (для улучшения фильтрования и эффективности обратной промывки).

Поток воды проходит через ультрафильтрационные мембраны и поступает в бак фильтрата/обратной промывки. Периодически для мембран проводится обратная промывка, во время которой удаляются накопившиеся на поверхности мембраны загрязнения. Для увеличения эффективности обратной промывки в промывную воду могут дозироваться реагенты.

Для проверки целостности мембран используется сухой воздух.

5. Режимы работы ультрафильтрации

Полный рабочий цикл ультрафильтрационной установки состоит из нескольких автоматически контролируемых этапов. Последовательность этих этапов в основном зависит от параметров исходной воды.

6. Преимущество ультрафильтрации

— эффективная фильтрация воды (фильтрация при рабочем давлении до 4 атм);
— пониженное количество используемых реагентов;
— простая автоматизация;
— полное удаление взвешенных веществ;
— дезинфекция (удаление 99,99% бактерий и вирусов);
— осветление воды (снижение мутности и цветности воды);
— эффективное удаление коллоидного кремния и органических веществ;
— ультратонкая очистка воды (степень фильтрации 0,02 микрон);

По сравнению с обычным фильтрованием, при ультрафильтрации и микрофильтрации реализуется механизм отделения загрязнений на поверхности мембраны, этот процесс подобен тонкому просеиванию на сите с порами практически одинакового размера. Любая частица, размер которой превышает размер пор, отсекается.

Это обстоятельство делает ультрафильтрацию чрезвычайно привлекательной технологией, т.к. качество обработанной воды удовлетворяет определенным абсолютным критериям и не зависит от качества исходной воды при условии сохранения целостности мембраны.

Кроме высокой эффективности очистки и ее абсолютного характера для частиц, превышающих размер пор мембраны, ультрафильтрационное оборудование становится все более компактным, установки водоподготовки на его основе становятся все более высокоавтоматизированными и требуют все меньших затрат химических реагентов.

7. Комплектация установок ультрафильтрации

Установки ультрафильтрации поставляются в различной комплектации, в зависимости от требований, предъявляемых к составу оборудования и степени автоматизации.
Установка ультрафильтрации состоит:

— Модуль ультрафильтрации
— Насос промывной с частотным приводом
— Насос исходной воды *
— Бак промывной воды (пермеата) *
— Блок дозирования коагулянта
— Блок дозирования флокулянт
— Блок химической промывки системы
— Блок автоматики и управления
— Комплект ручной и электроприводной арматуры
— Комплект контрольно-измерительной аппаратуры:*
— датчик давления
— датчик расхода
— датчик рН
— датчик температуры
— Монтажные рамы

*- поставляется по требованию

Степень автоматизации установки ультрафильтрации может быть различна. От самой простой — контролирование основных режимов работы, и заканчивая — сложным комплексом с контролированием более 50 различных параметров и вывода данных на ПК или диспетчерский пульт.

8. Схемы компоновки системы ультрафильтрации

Возможны различные варианты комплектации системы ультрафильтрации:

Вариант 1

— Фильтры грубой очистки воды

Применение: Исходная вода с высоким содержанием взвешенных веществ и мути. По остальным показателям в пределах нормы. В основном вода их скважин.

Вариант 2

— Фильтры грубой очистки воды

— Механические засыпные фильтры

Применение: Исходная вода с высоким содержанием взвешенных веществ, мутности, железа. Ярко выраженный желтый цвет воды и высокая окисляемость. Вода из поверхностных источников: рек, озер и водоемов.

Читайте так же:
Как устроен и работает фильтр обратного осмоса

Вариант 3

— Фильтры грубой очистки воды

Применение: Исходная вода с высоким содержанием взвешенных веществ, мутности, железа. Ярко выраженный желтый цвет воды и высокая окисляемость. Вода имеет высокую жесткость. Вода из поверхностных источников: рек, озер и водоемов.

Вариант 4

— Фильтры грубой очистки воды

— Установка обратного осмоса

Применение: Исходная вода с высоким содержанием взвешенных веществ, мутности, железа. Ярко выраженный желтый цвет воды и высокая окисляемость. Вода имеет высокую жесткость. В воде так же присутствуют соли тяжелых металлов и превышено значение по органолептическим показателям. Вода из поверхностных источников: рек, озер и водоем

Что такое ультрафильтрация воды и зачем она проводится

Ультрафильтрация и ультрафиолет — это разные вещи. Облучение, то есть очистка воды ультрафиолетом – это воздействие определенным спектром света на бактерий и паразитов, при котором они разрушаются. Делать это нужно на финальной стадии очистки жидкости. Ультрафильтрация или сверхфильтрация — это использование фильтра с очень маленькими порами, через которые не проходят даже вирусы. Следует рассмотреть этот способ подробнее.

Ультрафильтрация – определение и область применения

Всем требованиям предварительной подготовки воды отвечают только мембранные технологии – нанофильтрация, системы обратного осмоса, УФ фильтр для воды. По сравнению со старыми методами – электрокоагуляцией, установкой ультрафиолетового обеззараживания питьевой воды, хлорированием – они наиболее прогрессивные и с каждым годом дают прирост количества качественной чистой питьевой воды.

Ультрафильтрация – это удаление взвешенных частиц с помощью фильтров со сверхонкими порами. К примеру, размер вируса 0,02 микрона, а поры – 0,01 микрона.

Перед финальной очисткой жидкость не должна содержать в себе вещества, которые влияют на показатель мутности – органические и неорганические загрязнители. Поэтому на начальной стадии процесса применяются установки ультрафильтрации, которые очищают воду от 99,99% веществ. Это позволяет сохранить последующие фильтры и увеличить срок эксплуатации.

Размер пор варьируется в зависимости от исходного качества жидкости. Если водозабор происходит из поверхностных источников, требуется более качественный фильтр. При поставке воды из подземных скважин можно обойтись фильтрами с увеличенной пористостью.

Промышленные фильтры УФ используются в производстве вина, коньячных изделий, а также жидких продуктов питания – молока, соков. На нефтеперерабатывающих комбинатах их устанавливают для очистки сточных вод от нефтепродуктов, масел. В больших количествах – кассетным или каскадным методом – фильтры применяют на фабриках по производству питьевой воды.

Принцип действия

Основная задача ультрафильтра – обеззараживание и осветление жидкости. Происходит это при прохождении воды через мембрану. Есть два способа – напорный и безнапорный. В первом случае жидкость проходит через слой мембраны под давлением, создаваемым насосом, во втором – с внутренней стороны создается разреженное пространство, и вода всасывается мембраной.

Фильтрующие модули обычно расположены вертикально, чтобы жидкость распределялась равномерно. Элементы системы располагаются в такой последовательности:

  1. Водозабор или питающий трубопровод.
  2. Насос для регулирования давления.
  3. Фильтр с мембраной.
  4. Резервуар или труба для чистой воды.
  5. Труба для сброса отходов и жидкости после промывки системы.

Мембрана часто засоряется, поэтому при отладке оборудования специалист устанавливает оптимальное давление и частоту промывания системы. Промывка происходит двумя способами – встречным потоком из уже очищенной жидкости или дренажом из водозаборной трубы. Отходы сбрасываются в отдельную емкость и утилизируются.

Материалы изготовления мембран

Основной материал, который используется для изготовления мелкопористой мембраны – полисульфон. Это вещество устойчиво к кислотам, щелочам, спиртам. Полисульфон нового поколения выдерживает температуру до 200 градусов, дает малую усадку и расширение при изменениях температурного режима, поэтому его используют для изготовления деталей, которые должны держать форму в любых условиях. Волокна по своей структуре полые, поэтому материал применяют для изготовления фильтров обратного осмоса и в системах ультрафильтрации. Слабое место полиэстерсульфона – соединения хлора, поэтому производители в качестве основного критерия срока службы выделяют работу с хлорированной жидкостью, исчисляемую в часах.

Более долговечной считается керамическая мембрана. Она может служить десятилетиями, так как бактерии не способны ее повредить. Чистят ее обычными моющими средствами – уксусом, содой или даже горчичным порошком. В обслуживании керамика дешевле, так как нет расхода на обеззараживающие вещества, которыми обрабатывают остальные мембраны, чтобы на них не образовывались колонии микроорганизмов.

Устройство системы ультрафильтрации воды

Общая схема системы, в которую входит ультрафильтр, содержит фильтр грубой механической очистки, который задерживает песок, ил, донные отложения, крупную органику. Далее жидкость под напором через входящий патрубок попадает непосредственно в УФ фильтр, начинается основной процесс очистки. Вода просачивается через пористую мембрану и попадает в отводящий патрубок. Есть системы, в которых возможен обратный ток пермеата (фильтрата или чистой воды), чтобы смыть слои накопившейся органики с мембраны. Этот процесс настраивается и работает в автоматическом режиме. В зависимости от степени загрязнения исходной жидкости промывание делается чаще или реже.

Далее фильтрат поступает в систему обратного осмоса и проходит дальнейшую доочистку. УФ лампы для водоочистки обычно не требуются, так как на данном этапе из жидкости удаляются все опасные бактерии и вирусы.

Преимущества и недостатки метода

Метод ультрафильтрации позволяет:

  • поддерживать качество питьевой воды на высоком уровне, избегая колебаний в сторону ухудшения показателей;
  • удешевить стоимость воды для населения благодаря простому механизму очистки;
  • снизить уровень опасных соединений, которые образуются при использовании хлора;
  • установить малогабаритные установки в квартире или применить большие системы для многоэтажек или отдельных районов города;
  • подобрать установку по величине давления в трубопроводе;
  • экономить электроэнергию.
Читайте так же:
Обзор оцинкованных труб для водоснабжения

Вода после фильтрации содержит все полезные соли, поэтому минерализация не требуется. В очищенной жидкости нет тяжелых металлов.

Из недостатков самым существенным является неспособность фильтра задерживать растворенные неорганические соединения – натрий, кальций. Жидкости на предприятиях могут содержать и другие опасные вещества, молекулы которых по размерам не превышают диаметр пор мембраны. Смягчить воду с помощью этого метода нельзя, поэтому применяют другие фильтры.

Использование УФ фильтра предпочтительно для не хлорированной воды, так как хлор повреждает волокна и приводит материал в негодность. Для нейтрализации хлора применяют другие методы очистки, например – ионообменный способ.

Критерии выбора

В продаже можно найти бытовые компактные модели и более габаритные, предназначенные для предприятий, многоэтажек.

Чтобы правильно выбрать ультрафильтр, нужно учитывать:

  • потребность семьи в чистой воде – сколько литров в сутки расходуется – от этого показателя будет зависеть стоимость;
  • какой материал используется при изготовлении мембраны – от этого зависит срок службы и способность к самовосстановлению механизма очистки;
  • насколько изделие выдерживает горячую воду;
  • давление в городском водопроводе;
  • размер пор, от которого будет зависеть, насколько вода качественно очистится.

Поскольку фильтры данного типа стоят не дешево, важно учесть все показатели, чтобы не переплачивать лишнее. Возможно, качество воды в городской системе позволяет использовать ее для купания и стирки, а также мытья посуды, но для употребления внутрь необходимо поставить дополнительный фильтр. В таком случае подойдет самый маленький вариант, который устанавливается в квартире или офисе.

Установка и подключение

Для монтажа системы ультрафильтрации не обязательно обращаться к специалистам. Схема установки прилагается к каждому фильтру, выполнить ее можно с помощью обычного монтажного набора. Изделие устанавливается на магистраль холодной воды.

Если фильтр ставится только для производства питьевой воды, необходимо купить дополнительный кран, который будет установлен рядом с основным. Иногда хозяева хотят иметь запас, поэтому между краном и фильтром монтируют гидробак, в который поступает фильтрат.

Цена фильтрующей установки

Стоимость ультрафильтров различной производительности можно рассмотреть на примере изделий, которые производятся на базе Российского химико-технологического университета имени Д. П. Менделеева. Квартирный вариант стоит около 19 тысяч рублей и приспособлены к городским системам водоснабжения. Более производительные установки для многоквартирных домов, частных коттеджей стоят от 23 до 47 тысяч рублей. Промышленные фильтры – самые производительные, их стоимость около 80 тысяч рублей.

Для больших предприятий, специализирующихся на очистке жидкостей, закупают несколько фильтров, которые соединяют в кассеты. Для страховки должны применяться запасные блоки на случай, если рабочие фильтры находятся на ремонте или плановом обслуживании.

Ультрафильтрация воды

Для России и стран СНГ проблемой государственного масштаба стало снабжение населения качественной водопроводной водой. Традиционные методы очистки воды плохо справляются с удалением значительного количества новых техногенных загрязняющих веществ.

Изношенность большинства водопроводных магистралей приводит ко вторичному загрязнению воды и учащению аварийных выбросов. Традиционные бытовые магистральные фильтры не справляются с задачей качественной очистки воды. Решением этой проблемы является использование новейшего и перспективного метода ультрафильтрации — мембранного метода очистки воды.

Что чистят ультрафильтрацией.jpg

Компания Waterman предлагает Вашему вниманию установки ультрафильтрации, успешно решающие целый комплекс задач по очистке воды. Наши специалисты разработают оптимальную технологическую схему обработки воды с использованием технологий ультрафильтрации, осуществят проектирование, монтаж и запуск системы в эксплуатацию.

В промышленном масштабе метод ультрафильтрации для очистки воды стал применяться с конца ХХ века. В год суммарный прирост объемов воды, очищенной с помощью ультрафильтрации, составляет около 25 %.

Острота проблемы с чистой водопроводной водой в странах Азии (таких как Малайзия, Сингапур, Тайвань, Китай), поспособствовала созданию в 1985 году исследовательского центра в Сингапуре.

Центр разработал надёжную и недорогую для этих стран технологию ультрафильтрации. Сейчас бытовой модуль ультрафильтрации в азиатских семьях (например, в Малайзии) – такой же атрибут быта, как телевизор или холодильник.

Технология ультрафильтрации, усовершенствованная и проверенная временем, не осталась незамеченной Европой и Америкой.

Области применения технологии ультрафильтрации

С конца ХХ в. метод ультрафильтрации стал использоваться в промышленном масштабе. На сегодняшний день в мире работают сотни производительностью до 4105 м 3 /сут. Около 25 % составляет ежегодный суммарный прирост объемов воды, обработанной методом ультрафильтрации. Ультрафильтрацией обеспечивается качественная очистка вод поверхностных источников, питьевой, оборотной и технологической воды при минимуме эксплуатационных затрат. Ниже приведён перечень основных областей использования ультрафильтрационной технологии.

Строение мембраны ультрафильтрации.jpg

Использование метода ультрафильтрации для дезинфекции воды

С помощью стандартных модулей ультрафильтрации производится удаление вирусов и бактерий на уровне не менее 99,99%. В отличие от традиционных методов дезинфекции воды (хлорирование, ультрафиолетовое обеззараживание, озонирование и др.), при ультрафильтрации микроорганизмы физически устраняются из воды. Это достигается за счет того, что в ультрафильтрационной мембране диаметр пор значительно меньше размеров вирусов или бактерий (пора – 0,01 мкм, бактерия – 0,4…1,0 мкм, вирус – 0,02…0,4 мкм). Таким образом, микроорганизмы, находящиеся в воде, не могут проникнуть через такой барьер. В результате устраняется необходимость первичного хлорирования воды, а обеззараживание осуществляется уже непосредственно перед подачей воды потребителю.

Обработка ультрафильтрацией хозяйственно-бытовых и промышленных сточных вод

Во всем мире стараются повторно использовать очищенные сточные воды, которые гораздо выгоднее не сбрасывать в открытый водоем, а после обработки ультрафильтрацией направлять для промышленного использования. Тем самым техногенная нагрузка на водоёмы хозяйственно-питьевого назначения значительно снижается.

Читайте так же:
Выбираем насос для водоснабжения дома
Использование ультрафильтрации в качестве предварительной ступени перед системами обратного осмоса

Ультрафильтрационная мембрана.jpg

Обычно в системах обратного осмоса для предварительной очистки используются мешочные или патронные фильтры (рейтинг фильтрации 5 мкм). Замена их на ультрафильтрационные модули, имеющие более длительный срок службы, позволит снизить эксплуатационные расходы.

Применение ультрафильтрационных модулей позволяет стабилизировать коллоидный индекс SDI на уровне 1-2, в результате значительно сокращается частота промывок и замен мембран обратного осмоса.

Использование в качестве предварительной фильтрации перед обратным осмосом технологии осветлитель + флокулянт требует тщательного выбора флокулянтов. Катионные флокулянты нельзя использовать, так как обратноосмотические мембраны имеют отрицательный заряд. Анионные и неионогенные флокулянты используются при минимальных дозах. Сложно после блокировки пор флокулянтом восстановить работоспособность мембран. Эта проблема полностью отсутствует при ультрафильтрационной обработке.

Обратноосмотические мембраны при определенных условиях подвержены биообрастанию. Возникновению этой проблемы способствует высокая температура исходной воды, большое содержание “органики” (перманганатная окисляемость более 3,0 мгО2/л), длительные межпромывочные циклы, значительная обсемененность исходной воды.

Значительное количество крупномолекулярной “органики”, содержащейся в воде при традиционной технологии осветления, может заблокировать поры обратноосмотических мембран. Процесс ультрафильтрации делает возможной эффективную очистку обратноосмотическими системами воды с очень высоким потенциалом биообрастания (например, очищенными хозяйственно-бытовыми сточными водами).

Ультрафильтрация промывных вод фильтров обезжелезивания, осветления и сорбции
Использование ультрафильтрации для осветления воды

При оценивании новой технологии обращают внимание на себестоимость и качество получаемого продукта. Более низкая себестоимость осветленной воды высокого качества обеспечивается за счет компактности установок ультрафильтрации, простоты их обслуживания и незначительного расхода химических реагентов. В конечном итоге себестоимость осветленной воды, полученной с помощью ультрафильтрации, определяется качеством исходной воды и производительностью установки. Себестоимость очищенной воды для небольших коммерческих установок (производительность менее 100 м 3 /час) находится в пределах 1,5–3,5 руб/м 3 , для установок производительностью более 100 м 3 /час себестоимость очищенной воды ниже: 0,5–2,0 руб/м 3 .

Осветление воды при розливе в бутыли (осветление питьевой и минеральной воды)

Чистота природного источника воды не избавляет от необходимости перед розливом питьевой воды в бутыли пропускать ее через фильтр тонкой очистки.

Очистка воды с помощью чаще всего применяемых для этой цели механических фильтров картриджного типа (например, Big Blue 20) или мешочного типа 1-5 мкм не обеспечивает требуемую степень фильтрации. Наиболее перспективным методом улучшения качества воды (природных вод) является осветление воды методом ультрафильтрации (улучшение качества воды методом стерилизующей ультрафильтрации).

Ультрафильтрация как предварительная ступень очистки перед ионообменными фильтрами

Умягчитель воды промышленный.jpgБольшие сложности возникают при использовании ионообменных фильтров (особенно в промышленности и энергетике). Гранулометрический состав воды редко учитывается, когда проектируются системы фильтрации воды. Микрофильтрационные и осветлительные фильтры предварительной очистки эффективно удаляют взвешенные частицы размером свыше 1,0 мкм. Ионообменные смолы не пропускают коллоиды величиной 0,1…1,0 мкм, но вместе с тем происходит их «закупоривание». Результатом «закупоривания» является снижение интенсивности ионного обмена и ресурса смол. Чтобы этого избежать, нужно уменьшить мутность исходной воды ниже 3 NTU (нефелометрические единицы мутности). Это позволяет сделать ультрафильтрация (обеспечивает мутность до 0,1 NTU).

Часто имеющиеся в речной воде и воде артезианских скважин коллоиды SiO2 вызывают проблемы в процессе ионного обмена. При значении рН меньше 7 (после H-катионирования) может происходить полимеризация SiO2 (молекулы объединяются в длинные цепочки). С поверхности смолы такие образования удалить чрезвычайно сложно: требуются длительные слабоэффективные промывки и восстановление ионообменного материала. Для предотвращения необратимого «закупоривания» ионитов достаточно установить перед ионообменными фильтрами систему ультрафильтрации, удаляющую более 95 (а иногда и более 98) % коллоидов SiO2. При определенных условиях, например, при наличии в системе не промываемых химическими растворами пространств, происходит рост количества микроорганизмов, которые также служат причиной “закупоривания” ионообменных смол. Кроме того, бывает так, что уплотнения, клапаны и необработанные поверхности, соприкасающиеся с водой, не соответствуют санитарным требованиям и техническим нормам. В таких областях при благоприятных температуре и уровне рН процесс биообрастания активизируется. Использование ультрафильтрации позволяет значительно замедлить протекание этого процесса на поверхности смол.

В нефтехимической, химической промышленности и при очистке сточных вод ионообменные смолы загрязняются содержащимися в воде маслами. Часть масел легко удаляется в процессе осаждения, флотации или коалесценции. Но химически или механически эмульгированные масла плохо удаляются. Часто бывает дешевле заменить смолы, чем пробовать очистить их от масел. Эту проблему решает предварительная ультрафильтрация, обеспечивающая удаление до 99% эмульгированных масел перед последующей очисткой воды смолами.

Часто поверхность фильтрующих гранул и пространство между ними загрязняются высокомолекулярными органическими соединениями. Решить проблему пытаются использованием активированного угля или определённой смеси ионообменных смол. Однако активированный уголь имеет небольшой срок службы и обрастает микроорганизмами, а смолы приходится часто регенерировать (порой неэффективно). Учитывая повышенные эксплуатационные расходы и простои оборудования, мы видим, что ультрафильтрация является экономически более оправданным методом очистки воды от органических примесей.

Обработка ультрафильтрацией вод поверхностных источников и речной, озерной воды

Широко используемые в коммунальном хозяйстве и промышленности России методы осаждения и фильтрования с предварительной коагуляцией с середины ХХ века не претерпели радикальных изменений. Коагуляция эффективно удаляет примеси природного происхождения. Но произошел значительный рост количества техногенных загрязняющих воду веществ, для удаления которых методы отстаивания и фильтрования не всегда могут быть эффективными. Около 1000 контролируемых химических веществ насчитывается по новым санитарным нормативам. При первичном хлорировании воды происходит образование сотен хлорорганических соединений, что вызывает большие проблемы.

Читайте так же:
Что из себя представляет частотник для скважинного насоса и зачем он нужен

Установка ультрафильтрации.jpg

О содержании органических веществ судят, как правило, по перманганатной окисляемости воды. Из-за трудностей окисления техногенных органических соединений перманганатом калия истинное качество воды по содержанию «органики» не отражается этим показателем. В процессе наблюдений в течение недели за составом воды в р. Кама замечено, что перманганатная окисляемость менялась в диапазоне от 3,36 до 4,16 мгО2/л, в то время как бихроматная окисляемость колебалась от 15 до 43 мгО2/л. Колебания показателя обусловлены постоянным изменением состава органических соединений. В таких условиях трудно выбрать оптимальную дозу коагулянта, что способствует нестабильной работе осветлителей и дополнительной нагрузке на последующие стадии очистки. Введение таких дополнительных стадий очистки как озонирование, сорбция активированным углем и др. увеличивает эксплуатационные расходы и, соответственно, себестоимость очищенной воды.

Трудности в обеспечении населения России качественной питьевой водой привели к том, что это стало действительно государственной проблемой. Традиционно используемые способы получения чистой питьевой воды с использованием хлорирования, коагулирования, флотации, отстаивания и фильтрования, обладают следующими существенными недостатками:

  • нестабильность качества очищенной воды;
  • большие ресурсоёмкость и габариты оборудования;
  • опасность образования канцерогенов при использовании хлорсодержащих реагентов при обеззараживании воды;
  • большие расходы дорогих химических реагентов, а также решение задач организации их приготовления и хранения.

Ультрафильтрация лишена вышеперечисленных недостатков. С ее помощью вода очищается от взвешенных частиц, бактерий, вирусов, водорослей, коллоидов и высокомолекулярных органических соединений. Значительно увеличивается эффект осветления и степень извлечения органических соединений при предварительной коагуляции. Эффективность метода ультрафильтрации мало зависит от изменений дозы коагулянта, так как отфильтровывание образующихся хлопьев производится независимо от их размера. Также не требуется продолжительное время для формирования крупных хлопьев и отпадает необходимость в камере хлопьеобразования. Вода, очищенная с помощью метода ультрафильтрации, безопасна по микробиологии и обладает стабильно высоким качеством, которое не зависит от состава исходной воды.

Таким образом, достоинства метода ультрафильтрации — высокая эффективность очистки, низкие эксплуатационные затраты и надежность оборудования — делают его применение выгодным мероприятием. Специалисты компании Waterman помогут Вам его осуществить !

Наша компания предоставляет свои услуги по продаже, проектированию и установке систем водоочистки как промышленным производствам любого масштаба, так и частным лицам. Мы работаем качественно и оперативно !

Ультрафильтрация природных вод как метод получения питьевой воды

Несмотря на то, что все большее внимание, уделяется охране окружающей среды, общемировой тенденцией является ухудшение качества воды в водозаборах. Не исключением являются и водозаборы РФ. В действующем СанПин 2.1.4.1074-01 нормируется содержание тридцати неорганических соединений и элементов и около 680 индивидуальных органических соединений, изомеров и смесей, которые классифицируются как «вредные вещества в питьевой воде». Несмотря на столь внушительный список контролируемых показателей, уже сейчас можно с уверенностью утверждать, что употребление воды в пищу (равно как и использование в производстве пищевых субстанций) прошедшей подготовку только на городских очистных сооружениях, не только не улучшает здоровье, но и в ряде случаев для него опасно (вспомним хотя бы вспышку вирусного гепатита в Нижнем — Новгороде). Такое положение вещей связано с тем, что оборудование большинства станций водоподготовки устарело и требует реконструкции. Кроме того, зачастую, старые технологии водоподготовки (это в основном коагуляция, хлорирование воды) в «одиночку» справиться с новыми техногенными загрязнителями не в состоянии.

В будущем, в связи с нарастанием опасности техногенных катастроф, не приходится надеяться на улучшение качества воды в водозаборах. Тоже время можно быть уверенным во внедрении высокочувствительных (вероятно маркерных) методов мониторинга гигиенического качества воды и ужесточении нормативов по содержанию в воде (всех видов) токсичных соединений. В связи с этим при проектировании новых станций водоподготовки, которые в идеале должны быть устойчивы к аварийным загрязнением водозаборов, необходимо использовать технологии, обеспечивающие исключительную стабильность качества питьевой воды. На современном этапе таким требованиям отвечают только мембранные технологии водоподготовки (ультрафильтрация воды, нанофильтрация воды, обратный осмос) в комплексе с химическими технологиями (озонирование, и другие методы разрушения органических соединений в воде). Из всех мембранных методов водоподготовки для подготовки воды питьевого качества наиболее подходящим является ультрафильтрация воды.

Под ультрафильтрацией воды (УФ) понимается процесс удаления взвешенных и агломератов коллоидных частиц, в диапазоне размеров от 0.03 до 0.1 мкм, на мембранах низкого давления. В мире установки ультрафильтрации воды широко используются для обработки поверхностных или грунтовых вод, в том числе и для производства питьевой воды. Применение ультрафильтрации позволяет полностью решить проблему удаления из воды взвесей агломератов коллоидов, микроорганизмов. Фильтрат, полученный на установках ультрафильтрации имеет следующие типичные характеристики: значения SDI менее 2; взвешенные вещества менее 0,5 мг/л; содержание органических соединений в воде в сочетании с коагуляцией снижается в 2-3 раза; цветность не более 10-15 ; качество фильтрата стабильно и не зависит от флуктуаций качества питающей воды.

Ультрафильтрационная мембрана Hydracap изготавливается из полых волокон гидрофильного полиэстерсульфона ( PES ). Мембрана устойчива к воздействию хлора и имеет ресурс 200 000 ppm *часов по активному хлору. В цикле химической мойки мембрана может работать в широком диапазоне рН (2-13), при этом оставаясь устойчивой к биологическому загрязнению. Мембрана изготовлена из полых волокон с внутренним диаметром 0,8 или 1,2 мм . Стандартный модуль Hydracap 60 включает в себя 13200 полых волокон. Мембраны с волокнами диаметром 0,8 мм используются при значении мутности до 200 мг/л. Для более мутной воды рекомендуется использовать мембраны с волокнами диаметром 1,2 мм .

Читайте так же:
Что из себя представляет таблетированная соль для водоочистки и как ее применять

Параметр селективности стандартной мембраны ультрафильтрации составляет 100-150 кДа, что соответствует размеру поры примерно 0,025 мкм. Таким образом, мембрана обеспечивает эффективный барьер для большинства вирусов (на 4 порядка), бактерий (на 6 порядков) и Cryptosporidium oocysts .

На рис.1 представлена диаграмма ультрафильтрационной системы водоподготовки, которая состоит из питающего насоса, грязевика, ультрафильтрационного модуля, бака обратной промывки, насоса обратной промывки и системы химической очистки и дезинфекции.

Рис. 1. Схема полупромышленной ультрафильтрационной установки водоподготовки.

Питающая вода под давлением подается в систему ультрафильтрационной водоподготовки при помощи питающего насоса. Оценочный максимум дифференциального давления через всю систему около 2,5 бар, учитывающий потери на трение, а также падение давления на мембране, которое может увеличиваться из-за ее постепенного загрязнения и достигать значения 1,0 бар.

Периодически проводится обратная промывка модуля ультрафильтрации воды, для которой используется фильтрат, собранный в бак обратной промывки. Во время обратной промывки из системы удаляются загрязнения, и восстанавливается начальное падение давления на мембране.

Ультрафильтрационная система водоподготовки работает в автоматическом режиме и управляется микропроцессорным контроллером (PLC), который координирует работу всех компонентов системы, управляя работой насосов, вентилей и дозирующего оборудования.

В воду, которая питает ультрафильтрационную систему водоподготовки, может осуществляться дозирование коагулянта. Данный прием особенно эффективен, если имеют место периодические ухудшения качества питающей воды. Действие коагулянта приводит к формированию «хлопьев», на которых адсорбируются органические соединения. «Хлопья» задерживаются на поверхности ультрафильтрационнй мембраны и легко удаляются при обычной обратной промывке. Без использования коагулянта уменьшение параметра полной органики (ТОС) системой ультрафильтрации находится на уровне 25%, при использовании коагулянта данное значение возрастает до 60% (поверхностные воды).

Нашей компанией были проведены полупромышленные испытания собственных установок водоподготовки на основе ультрафильтрации воды, одна из них работала на мембранах Hydracap . В настоящей статье сообщается о некоторых результатах работы этой установки.

Результаты испытаний установки ультрафильтрации воды

В ходе полупромышленных испытаний отрабатывалась схема работы установки ультрафильтрации на воде реки Москва. Были уточнены основные показатели работы установки водоподготовки, такие как – удельный съём фильтрата с поверхности мембранного элемента, доза коагулянта, уровень pH исходной воды и воды полученной в результате ультрафильтрации.

Для обеспечения более полного удаления органических веществ из исходной воды проводилось дозирование полиоксихлорида алюминия (Аурат-18) и/или хлорида железа III . Использование этих коагулянтов позволяет добиться снижения уровня органических веществ в воде не менее чем на 60%.

Оптимальная доза составляет 4 мг/л по Al для полиоксихлорида алюминия и 6 мг/л по Fe для хлорида железа III . По результатам химических анализов фильтрата с установки ультрафильтрации, концентрация остаточного алюминия составила менее 0.05 мг/л, железа менее 0.1 мг/л.

Динамика изменения качества воды после коагуляции в осветлителе и ультрафильтрации иллюстрирована на рис 2-3.

Как наглядно видно из представленных графиков, технология ультрафильтрации водыс предварительной коагуляцией имеет значительное преимущество перед классической технологией осветления. Качество воды, полученной после ультрафильтрации по взвешенным веществам, практически не зависит от качества исходной воды и стабилизируется на уровне 0.1- 0.2мг/л. Содержание железа в выходной воде не превышало 100 мкг/л и определялось, в основном, количеством дозируемого в поток исходной воды хлорного железа. Эффективность удаления окисляющейся органики (перманганатная окисляемость) составила около 60% она сильно зависит от условий коагуляции (температура, рН, время коагуляции) и типа коагулянта.

КПД системы водоподготовки по воде – не менее 92%. Расход электроэнергии системы водоподготовки на выработку 1м 3 воды составляет около 0,19 кВт*ч.

Рекомендации по проектированию промышленной установки водоподготовки.

Промышленная система водоподготовки по результатам проведенных испытаний проектируется на элементах Hydracap 60, фирмы Hydranautics. Система ультрафильтрации воды производительностью 60м 3 /ч должна содержать не менее 17 элементов. Учитывая, что при проектировании системы водоподготовки обычно закладывается блочная конструкция установки, система должна содержать 3 блока по 6 элементов, т.е. 18 элементов. В случае выхода из строя одного из блоков, два других работают независимо, и могут обеспечить в аварийном режиме производительность до 51,6м 3 /ч обработанной воды.

Если требуется обеспечить резервирование системы очистки воды необходимо установить по 7 элементов на 1 блок. В аварийном режиме или во время проведения профилактических работ 2 блока по 7 элементов позволяют обеспечить производительность: 14 элементов Х 4,3м 3 /ч/элемент = 60,2м 3 /ч (удельный поток через поверхность ультрафильтрационной мембраны составит в этом случае 94 л/м 2 /ч). Кроме того, при проектировании установки ультрафильтрационной водоподготовки целесообразно заложить возможность размещения дополнительного резервного (8-го) элемента в каждом блоке. Допустимое время работы установки водоподготовки в аварийном режиме или режиме сервисного обслуживания составляет 24 часа. В случае необходимости более длительной работы установки на двух блоках возможно применение двух дополнительных мембран ультрафильтрации воды на каждом блоке. Время установки дополнительных мембран составляет 5-10 минут, без отключения фильтрации воды.

На каждом блоке необходимо установить насос подачи исходной воды, плюс один резервный насос на три блока.

Поиск

Системы водоподготовки НПК "Медиана-Фильтр": от домашних систем очистки воды до крупных промышленных установок

голоса
Рейтинг статьи
Ссылка на основную публикацию